Numerical solution of nonlinear 2D optimal control problems generated by Atangana-Riemann-Liouville fractal-fractional derivative
Tài liệu tham khảo
Agrawal, 2008, A general finite element formulation for fractional variational problems, J. Math. Anal. Appl., 337, 1, 10.1016/j.jmaa.2007.03.105
Atangana, 2016, Derivative with two fractional orders: a new avenue of investigation toward revolution in fractional calculus, Eur. Phys. J. Plus, 131, 373, 10.1140/epjp/i2016-16373-2
Atangana, 2017, Fractal-fractional differentiation and integration: connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fractals, 102, 396, 10.1016/j.chaos.2017.04.027
Atangana, 2018, Blind in a commutative world: simple illustrations with functions and chaotic attractors, Chaos Solitons Fractals, 114, 347, 10.1016/j.chaos.2018.07.022
Atangana, 2018, Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties, Phys. A, Stat. Mech. Appl., 505, 688, 10.1016/j.physa.2018.03.056
Atangana, 2019, Modeling attractors of chaotic dynamical systems with fractal-fractional operators, Chaos Solitons Fractals, 123, 320, 10.1016/j.chaos.2019.04.020
Bagley, 1985, Fractional calculus in the transient analysis of viscoelastically damped structures, AIAA J., 23, 918, 10.2514/3.9007
Baleanu, 2012, 10.1142/8180
Bhrawy, 2016, A new Legendre operational technique for delay fractional optimal control problems, Calcolo, 53, 521, 10.1007/s10092-015-0160-1
Canuto, 1988
Chelyshkov, 2006, Alternative orthogonal polynomials and quadratures, Electron. Trans. Numer. Anal., 25, 17
Dahaghin, 2017, A new optimization method for a class of time fractional convection-diffusion-wave equations with variable coefficients, Eur. Phys. J. Plus, 133, 130, 10.1140/epjp/i2017-11407-y
Diethelm, 2002, Analysis of fractional differential equations, J. Math. Anal. Appl., 265, 229, 10.1006/jmaa.2000.7194
Engheta, 1996, On fractional calculus and fractional multipoles in electromagnetism, Antennas Propag., 44, 554, 10.1109/8.489308
Hassani, 2019, Numerical solution of fractional variational problems depending on indefinite integrals using transcendental Bernstein series, J. Vib. Control, 25, 1930, 10.1177/1077546319840901
Hassani, 2019, Solving two-dimensional variable-order fractional optimal control problems with transcendental Bernstein series, J. Comput. Nonlinear Dyn., 14
Hassani, 2019, Generalized shifted Chebyshev polynomials for fractional optimal control problems, Commun. Nonlinear Sci. Numer. Simul., 75, 50, 10.1016/j.cnsns.2019.03.013
Heydari, 2019, Chebyshev cardinal wavelets for nonlinear variable-order fractional quadratic integral equations, Appl. Numer. Math., 144, 190, 10.1016/j.apnum.2019.04.019
Heydari, 2018, A computational method for solving two-dimensional nonlinear variable-order fractional optimal control problems, Asian J. Control, 10.1002/asjc.1986
Heydari, 2014, An efficient computational method for solving fractional biharmonic equation, Comput. Math. Appl., 68, 269, 10.1016/j.camwa.2014.06.001
Heydari, 2016, Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions, Eur. Phys. J. Plus, 131, 268, 10.1140/epjp/i2016-16268-2
Heydari, 2016, An efficient computational method based on the hat functions for solving fractional optimal control problems, Tbil. Math. J., 9, 143, 10.1515/tmj-2016-0007
Heydari, 2018, Chebyshev cardinal wavelets and their application in solving nonlinear stochastic differential equations with fractional Brownian motion, Commun. Nonlinear Sci. Numer. Simul., 64, 98, 10.1016/j.cnsns.2018.04.018
Heydari, 2019, Chebyshev cardinal wavelets for nonlinear stochastic differential equations driven with variable-order fractional Brownian motion, Chaos Solitons Fractals, 124, 105, 10.1016/j.chaos.2019.04.040
Kulish, 2002, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124, 803, 10.1115/1.1478062
Langlands, 2005, The accuracy and stability of an implicit solution method for the fractional diffusion equation, J. Comput. Phys., 205, 719, 10.1016/j.jcp.2004.11.025
Lederman, 2004, Mathematical justification of a nonlinear integrodifferential equation for the propagation of spherical flames, Ann. Mat. Pura Appl., 183, 173, 10.1007/s10231-003-0085-1
Mohammadi, 2019, Numerical solution of two-dimensional variable-order fractional optimal control problem by generalized polynomial basis, J. Optim. Theory Appl., 180, 536, 10.1007/s10957-018-1389-z
Moradi, 2019, A direct numerical solution of time-delay fractional optimal control problems by using Chelyshkov wavelets, J. Vib. Control, 25, 310, 10.1177/1077546318777338
Nemati, 2019, The use of the Ritz method and Laplace transform for solving 2d fractional-order optimal control problems described by the Roesser model, Asian J. Control, 21, 1189, 10.1002/asjc.1791
Oğuz, 2015, Chelyshkov collocation method for a class of mixed functional integro-differential equations, Appl. Math. Comput., 259, 943
Podlubny, 1999
Rahimkhani, 2019, Generalized fractional-order Bernoulli-Legendre functions: an effective tool for solving two-dimensional fractional optimal control problems, IMA J. Math. Control Inf., 36, 185, 10.1093/imamci/dnx041
Soltani Sarvestani, 2019, A wavelet approach for the multi-term time fractional diffusion-wave equation, Int. J. Comput. Math., 96, 640, 10.1080/00207160.2018.1458097
Yuste, 2006, Weighted average finite difference methods for fractional diffusion equations, J. Comput. Phys., 216, 264, 10.1016/j.jcp.2005.12.006
Zaky, 2018, A Legendre collocation method for distributed-order fractional optimal control problems, Nonlinear Dyn., 91, 2667, 10.1007/s11071-017-4038-4