Numerical solution of a class of bilevel programming problems

Alexander S. Strekalovsky1, A. V. Orlov1, А. В. Малышев1
1Institute of System Dynamics and Control Theory, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Germeier, Yu.B., Igry s neprotivopolzhnymi interesami (Games with Nonopposite Interests), Moscow: Nauka, 1976.

Gorelik, V.A. and Kononenko, A.F., Teoretiko-igrovye modeli prinyatiya reshenii v ekologo-ekonomicheskikh sistemakh (Game-Theoretic Models for Decision-Making in Ekologo-Economic Systems), Moscow: Radio i svyaz, 1982.

Vasin, A.A. and Morozov, V.V., Teoriya igr i modeli matematicheskoi ekonomiki (Game Theory and Mathematical EconomicModels), Moscow: MAKS, 2005.

Bard, J.F., Practical Bilevel Optimization, Dordrecht: Kluwer, 1998.

Dempe, S., Foundations of Bilevel Programming, Dordrecht: Kluwer, 2002.

Colson, B., Marcotte, P., and Savard, G., An Overview of Bilevel Optimization, Ann. Operat. Res., 2007, vol. 153, no. 1, pp. 235–256.

Saboia, C.H., Campelo, M., and Scheimberg, S., A Computational Study of Global Algorithms for Linear Bilevel Programming, Num. Algor., 2004, vol. 35, nos. 2–4, pp. 155–173.

Audet, C., Savard, G., and Zghal, W., New Branch-and-Cut Algorithm for Bilevel Linear Programming, J. Optim. Th. Appl., 2007, vol. 134, no. 2, pp. 53–370.

Muu, L.D. and Quy, N.V., A Global Optimization Method for Solving Convex Quadratic Bilevel Programming Problems, J. Glob. Optim., 2003, vol. 26, no. 2, pp. 199–219.

Li, H. and Wang, Y., A Hybrid Genetic Algorithm for Solving a Class of Nonlinear Bilevel Programming Problems, Proc. 6th Int. Conf. Simulated Evolution and Learning, Wang, T.D., Li, X., et al., Eds., Hetei, China, 2006, pp. 408–415.

Bard, J.F., Convex Two-Level Optimization, Math. Programm., 1988, vol. 40, no. 1, pp. 15–27.

Gumus, Z.H. and Floudas, C.A., Global Optimization of Nonlinear Bilevel Programming Problems, J. Glob. Optim., 2001, vol. 20, no. 1, pp. 1–31.

Colson, B., Marcotte, P., and Savard, G., A Trust-Region Method for Nonlinear Bilevel Programming: Algorithm and Computational Experience, Comput. Optim. Appl., 2005, vol. 30, no. 3, pp. 211–227.

Strekalovsky, A.S, Orlov, A.V., and Malyshev, A.V., Local Search in a Quadratic-Linear Bilevel Programming Problem, Sib. Zh. Vych. Mat., 2010, vol. 13, no. 1, pp. 75–88.

Vasiliev, F.P., Metody optimizatsii (Optimization Methods), Moscow: Faktorial, 2002.

Bazara, M. and Shetti, K., Nelineinoe programmirovanie. Teoriya i algoritmy (Nonlinear Programming: Theory and Algorithms),Moscow: Mir, 1982.

Strekalovsky, A.S., Elementy nevypukloi optmizatsii (Elements of Nonconvex Optimization), Novosibirsk: Nauka, 2003.

Strekalovsky, A.S., Minimization of a Difference between Two Convex Functions on an Admissible Set, Zh. Vych. Mat.Mat. Fiz., 2003, vol. 43, no. 3, pp. 399–409.

Strekalovsky, A.S. and Orlov, A.V., Bimatrichnye igry i bilineinoe programmirovanie (Bimatrix Games and Bilinear Programming), Moscow: Fizmatlit, 2007.

Strekalovsky, A.S. and Orlov, A.V., A New Approach to Nonconvex Optimization, Vych. Met. Progr., 2007, vol. 8, no. 2, pp. 11–27.

Orlov, A.V. and Strekalovsky, A.S., Numerical Search for Equilibrium Situations in Bimatrix Games, Zh. Vych. Mat.Mat. Fiz., 2005, vol. 45, no. 6, pp. 983–997.

Vasiliev, I.L., Klimentova, K.B., and Orlov, A.V., Parallel Global Search for EquilibriumSituations in Bimatrix Games, Vych. Met. Progr., 2007, vol. 8, no. 2, pp. 84–94.

Orlov, A.V., Numerical Solution of Bilinear Programming Problems, Zh. Vych. Mat. Mat. Fiz., 2008, vol. 48, no. 2, pp. 45–62.

Calamai, P. and Vicente, L., Generating Linear and Linear-Quadratic Bilevel Programming Problems, SIAM J. Sci. Comput., 1993, vol. 14, no. 4, pp. 770–782.

Calamai, P. and Vicente, L., Generating Quadratic Bilevel Programming Test Problems, ACM Trans.Math. Soft., 1994, vol. 20, pp. 103–119.