Numerical simulations of local circulation and its response to land cover changes over the Yellow Mountains of China
Tóm tắt
In this study, local circulations and their responses to land use and land cover (LULC) changes over the Yellow Mountains of China are examined by using Weather Research and Forecast (WRF) model simulations of a selected case under weak-gradient synoptic conditions. The results show that mountain-valley breezes over the region are characterized by an intense upslope flow lasting for about 11 h (0600-1700 LST) along the northern slope during daytime. A convergence zone occurs at the mountain ridge and moves northwest-ward with time. During nighttime, wind directions are reversed, starting first at higher elevations. Three sensitivity experiments are conducted, in which the current land covers are replaced by grassland, mixed forest, and bare soil, respectively, while keeping the other model conditions identical to a control run. These sensitivity simulations are designed to represent the changes of LULC over the Yellow Mountains area during the past decades. The results show that changes in land cover could affect substantially land-surface and atmosphere interactions, the evolution of local circulations, and characteristics of the planetary boundary layer (PBL). Significant differences are noted in horizontal winds, and sensible and latent heat fluxes. On the other hand, when the surface is covered by mixed forest, slight variations in local winds and surface variables are identified. The results appear to have important implications to urban planning and constructions as well as the transport of air pollutants over mountainous regions.
Tài liệu tham khảo
Atkinson, B. W., 1981: Mesoscale Atmospheric Circulations. Academic Press, 495 pp.
Bajic, A., 1990: Small valley wind characteristics: An observational study. Meteor. Z., 40, 377–382.
Banta, R. M., 1984: Daytime boundary-layer evolution over mountainous terrain. Part I: Observations of the dry circulations. Mon. Wea. Rev., 112, 340–356.
Banta, R. M., 1985: Late-morning jump in T K E in the mixed layer over a mountain basin. J. Atmos. Sci., 42, 407–411.
Banta, R. M., 1986: Daytime boundary layer evolution over mountainous terrain. Part II: Numerical studies of upslope flow duration. Mon. Wea. Rev., 114, 1112–1130.
Cai Xuhui, Song Yu, Zhu Tong, et al., 2007: Glacier winds in the Rongbuk Valley, north of Mount Everest. 2: Their role in vertical exchange processes. J. Geophys. Res., 112, D11102.
Cairns, M. M., and J. Corey, 2003: Mesoscale model simulations of high-wind events in the complex terrain of western Nevada. Wea. Forecasting, 18, 249–263.
Chen Fei and J. Dudhia, 2001: Coupling an advanced land surface hydrology model with the Penn State NCAR MM5 modeling system. Part II: Preliminary model validation. Mon. Wea. Rev., 129, 587–604.
Chen Qian and Zhao Ming, 2006: A numerical experiment on the effect of terrain on the precipitation. Scientia Meteor. Sinica, 26, 484–493. (in Chinese)
Crawford, T. M., D. J. Stensrud, F. Mora, et al., 2001: Value of incorporating satellite-derived land cover data in MM5/PLACE for simulating surface temperatures. J. Hydrometeor., 2, 453–468.
Dudhia, J., 1989: Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107.
Egger, J., 1990: Thermally forced flows: Theory. Atmospheric Processes over Complex Terrain, Meteor. Monogr., No. 40. Amer. Meteor. Soc., 43–57.
Egger, J., S. Bajrachaya, U. Egger, et al., 2000: Diurnal winds in the Himalayan Kali Gandaki Valley. Part I: Observations. Mon. Wea. Rev., 128, 1106–1122.
Ekhart, E., 1934: Neuere untersuchungen zur aerologie der talwinde: Die periodischen tageswinde in einem quertale der alpen. Beitr. Phys. Atmos., 21, 245–268.
Gero, A. F., and A. J. Pitman, 2006: The impact of land cover change on a simulated storm event in the Sydney basin. J. Appl. Meteor. Climatol., 45, 283–300.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
Hong, S. Y., and S. K. Kim, 2008: Stable boundary layer mixing in a vertical diffusion scheme. Proceeding of the Ninth Annual W R F User's Workshop, Boulder, CO, 3. 3.
Horvath, K., D. Koracin, R. Vellore, et al., 2012: Subkilometer dynamical downscaling of near-surface winds in complex terrain using WRF and MM5 mesoscale models. J. Geophys. Res., 117, D11111, doi: 10.1029/2012JD017432.
Janjic, Z. I., 2002: Nonsingular implementation of the Mellor-Yamada Level 2.5 scheme in the NCEP meso model. NCEP Office Note, 437, 61 pp.
Jankov, I., P. J. Schultz, C. J. Anderson, et al., 2007: The impact of different physical parameterizations and their interactions on cold season QPF in the American River basin. J. Hydrometeor., 8, 1141–1151.
Jimenez, P. A., and J. Dudhia, 2012: Improving the representation of resolved and unresolved topographic effects on surface wind in the WRF model. J. Appl. Meteor. Climatol., 51, 300–316.
Kain, J. S., 2004: The Kain-Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181.
Kondo, J., T. Kuwagata, and S. Haginoya, 1989: Heat budget analysis of nocturnal cooling and daytime heating in a basin. J. Atmos. Sci., 46, 2917–2933.
Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.
Liu Shuhua, Liu Zhenxin, Li Ju, et al., 2009: Numerical simulation for the coupling effect of local atmospheric circulations over the area of Beijing, Tianjin, and Hebei Province. Sci. China (Earth Sci.), 52, 382–392.
Liu Zhenxin, Liu Shuhua, Hu Fei, et al., 2012: A comparison study of the simulation accuracy between WRF and MM5 in simulating local atmospheric circulations over greater Beijing. Sci. China (Earth Sci.), 55, 418–427.
Ma Xinye and Zhang Yaocun, 2015: Numerical study of the impacts of urban expansion on Meiyu precipi t a t i on over eastern China. J. Meteor. Res., 29, 237–256, doi: 10.1007/s13351-015-4063-5.
Mahmood, R., R. Leeper, and A. I. Quintanar, 2011: Sensitivity of planetary boundary layer atmosphere to historical and future changes of land use/land cover, vegetation fraction, and soil moisture in western Kentucky, USA. Global and Planet Change, 78, 36–53.
McPherson, R. A., and D. J. Stensrud, 2005: Influences of a winter wheat belt on the evolution of the boundary layer. Mon. Wea. Rev., 133, 2178–2199.
Miao Junfeng, 2014: An overview of numerical studies of interaction of urban heat island and sea breeze circulations. Trans. Atmos. Sci., 37, 521–528. (in Chinese)
Miao, J.-F., L. J. M. Kroon, J. Vila-Guerau de Arellano, et al., 2003: Impacts of topography and land degradation on the sea breeze over eastern Spain. Meteor. Atmos. Phys., 84, 157–170.
Miao, J.-F., D. Chen, and K. Borne, 2007: Evaluation and comparison of Noah and Pleim-Xiu land surface models in MM5 using G6TE2001 data: Spatial and temporal variations in near-surface air temperature. J. Appl. Meteor. Climatol., 46, 1587–1605.
Miao, J.-F., D. Chen, K. Wyser, et al., 2008: Evaluation of M M 5 mesoscale model at local scale for air quality applications over the Swedish west coast: Influence of PBL and LSM parameterizations. Meteor. Atmos. Phys., 99, 77–103.
Miao, J.-F., K. Wyser, D. Chen, et al., 2009: Impacts of boundary layer turbulence and land surface process parameterizations on simulated sea breeze characteristics. Annates Geophysicae, 27, 2303–2320.
Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, 16663–16682.
Mursch-Radlgruber, E., 1995: Observations of flow structure in a small forested valley system. Theor. Appl. Climatol., 52, 3–17.
Narisma, G. T., and A. J. Pitman, 2003: The impact of 200 years of land cover change on the Australian near-surface climate. J. Hydrometeor., 4, 424–436.
Noppel, H., and F. Fiedler, 2002: Mesoscale heat transport over complex terrain by slope winds-A conceptual model and numerical simulations. Bound.- Layer Meteor., 104, 73–97.
Pielke Sr., R. A., 2001: Influence of the spatial distribution of vegetation and soils on the prediction of cumulus convection rainfall. Rev. Geophys., 39, 151–177.
Pielke, R. A., J. Adegoke, A. Beltran-Przekurat, et al., 2007: An overview of regional land use and land cover impacts on rainfall. Tellus B, 59, 587–601.
Schneider, S. R., D. F. McGinnis, and G. Stephens, 1985: Monitoring Africa's Lake Chad basin w i t h LANDSAT and NOAA satellite data. Int. J. Remote Sens., 6, 59–73.
Segal, M., R. Avissar, M. C. McCumber, et al., 1988: Evaluation of vegetation effects on the generation and modification of mesoscale circulations. J. Atmos. Sci., 45, 2268–2293.
Sen Roy, S., R. Mahmood, A. I. Quintanar, et al., 2011: Impacts of i r r i g a t i on on dry season precipitation in India. Theor. Appl. Climatol., 104, 193–207.
Shen Jinmei, 1998: Numerical modelling of the effects of vegetation and environmental conditions on the lake breeze. Bound.-Layer Meteor., 87, 481–498.
Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research W R F Version 3. NCAR/TN-475+STR, 113 pp.
Skamarock, W. C., and J. B. Klemp, 2008: A timesplit nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys., 227, 3465–3485.
Wagner, A., 1932: Der tagliche luftdruck und temperaturgang in der freien atmosphare und in gebirgstalern. Gerlands Beitr. Geophys., 37, 315–344.
Wagner, A., 1932: Neue theorie der berg- und talwinde. Meteor. Z., 49, 329–341.
Wagner, A., 1938: Theorie und beobachtung der periodischen gebirgswinde. Gerlands Beitr. Geophys., 52, 408–449.
Wang Die, Miao Junfeng, and Tan Zhemin, 2013: Impacts of topography and land cover change on thunderstorm over the Huangshan (Yellow Mountain) area of China. Natural Hazards, 67, 675–699.
Whiteman, C. D., and J. C. Doran, 1993: The relationship between overlying synoptic-scale flows and winds w i t h i n a valley. J. Appl. Meteor., 32, 1669–1682.
Wippermann, F., and G. Groβ 1981: On the construction of orographically influenced wind roses for given distributions of the large-scale wind. Beitr. Phys. Atmos., 54, 492–501.
Wu Youxun, Yang Baogui, Wang Keqiang, et al., 2005: Climatic analysis of cloud deck in Huangshan. Acta Meteor. Sinica, 25, 97–104. (in Chinese)
Zhai Guoqing, Gao Kun, Yu Zhangxiao, et al., 1995: Numerical simulation of the effects of mesoscale topography in a heavy r a in process. Chinese J. Atmos. Sci., 19, 475–480. (in Chinese)
Zhang, D., and R. A. Anthes, 1982: A high-resolution model of the planetary boundary layer-sensitivity tests and comparisons w i t h SESAME-79 data. J. Appl. Meteor., 21, 1594–1609.