Numerical simulations of fluid flow in trabecular–lacunar cavities under cyclic loading
Tài liệu tham khảo
Fehrendt, 2014, Negative influence of a long-term high-fat diet on murine bone architecture, Internet J. Endocrinol., 2014
Goff, 2012, Three-dimensional characterization of resorption cavity size and location in human vertebral trabecular bone, Bone, 51, 28, 10.1016/j.bone.2012.03.028
Ascenzi, 2008, vol. 41, 3426
Wang, 2005, In situ measurement of solute transport in the bone lacunar-canalicular system, Proc. Natl. Acad. Sci. U. S. A., 102, 11911, 10.1073/pnas.0505193102
Johnson, 1996, Fluid flow stimulates rapid and continuous release of nitric oxide in osteoblasts, Am. J. Physiol., 271, E205
Ajubi, 1996, Pulsating fluid flow increases prostaglandin production by cultured chicken osteocytes--a cytoskeleton-dependent process, Biochem. Biophys. Res. Commun., 225, 62, 10.1006/bbrc.1996.1131
Wang, 2018, Solute transport in the bone lacunar-canalicular system (LCS), Curr. Osteoporos. Rep., 16, 32, 10.1007/s11914-018-0414-3
Xiaogang, 2016
Anderson, 2008, Idealization of pericellular fluid space geometry and dimension results in a profound underprediction of nano-microscale stresses imparted by fluid drag on osteocytes, J. Biomech., 41, 1736, 10.1016/j.jbiomech.2008.02.035
Metzger, 2015, The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response, J. Biomech. Eng., 137, 10.1115/1.4028985
Metzger, 2015, Pressure and shear stress in trabecular bone marrow during whole bone loading, J. Biomech., 48, 3035, 10.1016/j.jbiomech.2015.07.028
Birmingham, 2016, An experimental and computational investigation of bone formation in mechanically loaded trabecular bone explants, Ann. Biomed. Eng., 44, 1191, 10.1007/s10439-015-1378-4
Verbruggen, 2014, Fluid flow in the osteocyte mechanical environment: a fluid-structure interaction approach, Biomech. Model. Mechanobiol., 13, 85, 10.1007/s10237-013-0487-y
Verbruggen, 2012, Strain amplification in bone mechanobiology: a computational investigation of the in vivo mechanics of osteocytes, J. R. Soc. Interface, 9, 2735, 10.1098/rsif.2012.0286
Vaughan, 2015, Bone cell mechanosensation of fluid flow stimulation: a fluid-structure interaction model characterising the role integrin attachments and primary cilia, Biomech. Model. Mechanobiol., 14, 703, 10.1007/s10237-014-0631-3
Coughlin, 2016, Primary cilia expression in bone marrow in response to mechanical stimulation in explant bioreactor culture, Eur. Cell. Mater., 32, 111, 10.22203/eCM.v032a07
Verbruggen, 2016, Mechanisms of osteocyte stimulation in osteoporosis, J. Mech. Behav. Biomed. Mater., 62, 158, 10.1016/j.jmbbm.2016.05.004
Gatti, 2018, Microstructural changes associated with osteoporosis negatively affect loading-induced fluid flow around osteocytes in cortical bone, J. Biomech., 66, 127, 10.1016/j.jbiomech.2017.11.011
Metzger, 2017, Altered architecture and cell populations affect bone marrow mechanobiology in the osteoporotic human femur, Biomech. Model. Mechanobiol., 16, 841, 10.1007/s10237-016-0856-4
Verbruggen, 2015, Altered mechanical environment of bone cells in an animal model of short- and long-term osteoporosis, Biophys. J., 108, 1587, 10.1016/j.bpj.2015.02.031
Metzger, 2016, Comparison of solid and fluid constitutive models of bone marrow during trabecular bone compression, J. Biomech., 49, 3596, 10.1016/j.jbiomech.2016.09.018
McNamara, 2009, Attachment of osteocyte cell processes to the bone matrix, Anat. Rec., 292, 355, 10.1002/ar.20869
Bryant, 1989, Rheology of bovine bone marrow, Proc. Inst. Mech. Eng. H, 203, 71, 10.1243/PIME_PROC_1989_203_013_01
Metzger, 2015, The in situ mechanics of trabecular bone marrow: the potential for mechanobiological response, J. Biomech. Eng., 137, 10.1115/1.4028985
Qin, 2009, Intramedullary pressure and matrix strain induced by oscillatory skeletal muscle stimulation and its potential in adaptation, J. Biomech., 42, 140, 10.1016/j.jbiomech.2008.10.018
Metzger, 2014, Rheological behavior of fresh bone marrow and the effects of storage, J. Mech. Behav. Biomed. Mater., 40, 307, 10.1016/j.jmbbm.2014.09.008
Li, 2008
Sandino, 2017, Mechanical stimuli of trabecular bone in osteoporosis: a numerical simulation by finite element analysis of microarchitecture, J. Mech. Behav. Biomed. Mater., 66, 19, 10.1016/j.jmbbm.2016.10.005
Delaisse, 2020, Re-thinking the bone remodeling cycle mechanism and the origin of bone loss, Bone, 141, 10.1016/j.bone.2020.115628
Turner, 1994, vol. 8, 875
Turner, 1995, Mechanotransduction in bone: role of strain rate, Am. J. Physiol., 269, E438
Richards, 2000, Increased distraction rates influence precursor tissue composition without affecting bone regeneration, J. Bone Miner. Res., 15, 982, 10.1359/jbmr.2000.15.5.982
Qin, 1998, Nonlinear dependence of loading intensity and cycle number in the maintenance of bone mass and morphology, J. Orthop. Res., 16, 482, 10.1002/jor.1100160414
Rubin, 1985, Regulation of bone mass by mechanical strain magnitude, Calcif. Tissue Int., 37, 411, 10.1007/BF02553711