Numerical simulations of an advection fog event over Shanghai Pudong International Airport with the WRF model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bang, C. H., J. W. Lee, and S. Y. Hong, 2009: Predictability experiments of fog and visibility in local airports over Korea using the WRF model. J. Korean Soc. Atmos. Environ., 24, 92–101.
Bari, D., T. Bergot, and M. El Khlifi, 2015: Numerical study of a coastal fog event over Casablanca, Morocco. Quart. J. Roy. Meteor. Soc., 141, 1894–1905, doi: 10.1002/qj.2494.
Bergot, T., and D. Guedalia, 1994: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests. Mon. Wea. Rev., 122, 1218–1230, doi: 10.1175/1520-0493(1994)122<1218:NFORFP>2.0.CO;2.
Bergot, T., E. Terradellas, J. Cuxart, et al., 2007: Intercomparison of single-column numerical models for the prediction of radiation fog. J. Appl. Meteor. Climatol., 46, 504–521, doi: 10.1175/JAM2475.1.
Bieringer, P. E., M. Donovan, F. Robasky, et al., 2006: A characterization of NWP ceiling and visibility forecasts for the terminal airspace. Preprints, 12th Conference on Aviation Range and Aerospace Meteorology, Atlanta, GA, Amer. Meteor. Soc., 3 pp. [Accessed 10 July 2017 at http://ams.confex.com/ams/Annual2006/techprogram/paper_103720.htm].
Bott, A., and T. Trautmann, 2002: PAFOG—A new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos. Res., 64, 191–203, doi: 10.1016/S0169-8095(02)00091-1.
Chen, F., and J. Dudhia, 2001: Coupling an advanced land surface–hydrology model with the Penn State–NCAR MM5 modeling system. Part I: Model implementation and sensitivity. Mon. Wea. Rev., 129, 569–585, doi: 10.1175/1520-0493(2001)129<0569:CAALSH>2.0.CO;2.
Clark, P. A., and W. P. Hopwood, 2001a: One-dimensional sitespecific forecasting of radiation fog. Part I: Model formulation and idealized sensitivity studies. Meteor. Appl., 8, 279–286, doi: 10.1017/S1350482701003036.
Clark, P. A., and W. P. Hopwood, 2001b: One-dimensional sitespecific forecasting of radiation fog. Part II: Impact of site observations. Meteor. Appl., 8, 287–296.
Creighton, G., E. Kuchera, R. Adams-Selin, et al., 2014: AFWA Diagnostics in WRF. [Accessed 10 July 2017 at http://www2.mmm.ucar.edu/wrf/users/docs/AFWA_Diagnostics_in_WRF.pdf].
Doran, J. A., P. J. Roohr, D. J. Beberwyk, et al., 1999: The MM5 at the Air Force Weather Agency—New products to support military operations. The 8th Conference on Aviation, Range, and Aerospace Meteorology, NOAA/NWS, Dallas, Texas.
Dudhia, J., 1989: Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci., 46, 3077–3107, doi: 10.1175/1520-0469(1989)046<3077:NSOCOD>2.0.CO;2.
Fabbian, D., R. de Dear, and S. Lellyett, 2007: Application of artificial neural network forecasts to predict fog at Canberra International Airport. Wea. Forecasting, 22, 372–381, doi: 10.1175/WAF980.1.
Fels, S. B., and M. D. Schwarzkopf, 1981: An efficient, accurate al-gorithm for calculating CO2 15 μm band cooling rates. J. Geo-phys. Res., 86, 1205–1232, doi: 10.1029/JC086iC02p01205.
Fu, Q., and K. N. Liou, 1992: On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres. J. Atmos. Sci., 49, 2139–2156, doi: 10.1175/1520-0469(1992)049<2139:OTCDMF>2.0.CO;2.
Fu, G., P. Y. Li, J. G. Crompton, et al., 2010: An observational and modeling study of a sea fog event over the Yellow Sea on 1 August 2003. Meteor. Atmos. Phys., 107, 149–159, doi: 10.1007/s00703-010-0073-0.
Golding, B. W., 1993: A study of the influence of terrain on fog development. Mon. Wea. Rev., 121, 2529–2541, doi: 10.1175/1520-0493(1993)121<2529:ASOTIO>2.0.CO;2.
Gu, Y., K. N. Liou, S. C. Ou, et al., 2011: Cirrus cloud simulations using WRF with improved radiation parameterization and increased vertical resolution. J. Geophys. Res., 116, D06119, doi: 10.1029/2010JD014574.
Gultepe, I., and J. A. Milbrandt, 2010: Probabilistic parameterizations of visibility using observations of rain precipitation rate, relative humidity, and visibility. J. Appl. Meteor. Climatol., 49, 36–46, doi: 10.1175/2009JAMC1927.1.
Gultepe, I., M. D. Müller, and Z. Boybeyi, 2006: A new visibility parameterization for warm-fog applications in numerical weather prediction models. J. Appl. Meteor., 45, 1469–1480, doi: 10.1175/JAM2423.1.
Gultepe, I., R. Tardif, S. C. Michaelides, et al., 2007: Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys., 164, 1121–1159, doi: 10.1007/s00024-007-0211-x.
Gultepe, I., B. Hansen, S. G. Cober, et al., 2009: The fog remote sensing and modeling field project. Bull. Amer. Meteor. Soc., 90, 341–359, doi: 10.1175/2008BAMS2354.1.
Gultepe, I., B. Zhou, J. Milbrandt, et al., 2015: A review on ice fog measurements and modeling. Atmos. Res., 151, 2–19, doi: 10.1016/j.atmosres.2014.04.014.
Hong, S. Y., and J. O. J. Lim, 2006: The WRF single-moment 6- class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Hong, S. Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341, doi: 10.1175/MWR 3199.1.
Hu, H. Q., Q. H. Zhang, B. G. Xie, et al., 2014: Predictability of an advection fog event over North China. Part I: Sensitivity to initial condition differences. Mon. Wea. Rev., 142, 1803–1822, doi: 10.1175/MWR-D-13-00004.1.
Iacono, M. J., J. S. Delamere, E. J. Mlawer, et al., 2008: Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, doi: 10.1029/2008JD009944.
Janjić, Z. I., 1994: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945, doi:10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2.
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor., 43, 170–181, doi: 10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2.
Kim, C. K., and S. S. Yum, 2012: A numerical study of sea-fog formation over cold sea surface using a one-dimensional turbulence model coupled with the Weather Research and Forecasting Model. Bound.-Layer Meteor., 143, 481–505, doi: 10.1007/s10546-012-9706-9.
Li, Y. P., and Y. X. Zheng, 2015: Analysis of atmospheric turbulence in the upper layers of sea fog. Chinese J. Oceanol. Limnol., 33, 809–818, doi: 10.1007/s00343-015-4030-0.
Lim, K. S. S., and S. Y. Hong, 2010: Development of an effective double-moment cloud microphysics scheme with prognostic cloud condensation nuclei (CCN) for weather and climate models. Mon. Wea. Rev., 138, 1587–1612, doi: 10.1175/2009MWR2968.1.
Lin, Y. L., R. D. Farley, and H. D. Orville, 1983: Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092, doi: 10.1175/1520-0450(1983)022<1065:BPOTSF>2.0.CO;2.
Mlawer, E. J., S. J. Taubman, P. D. Brown, et al., 1997: Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res., 102, doi: 10.1029/97JD00237.
Morrison, H., G. Thompson, and V. Tatarskii, 2009: Impact of cloud microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of oneand two-moment schemes. Mon. Wea. Rev., 137, 991–1007, doi: 10.1175/2008MWR2556.1.
Nakanishi, M., and H. Niino, 2006: An improved Mellor–Yamada level-3 model: Its numerical stability and application to a regional prediction of advection fog. Bound.-Layer Meteor., 119, 397–407, doi: 10.1007/s10546-005-9030-8.
Niu, S. J., C. S. Lu, H. Y. Yu, et al., 2010: Fog research in China: An overview. Adv. Atmos. Sci., 27, 639–662, doi: 10.1007/s00376-009-8174-8.
Pagowski, M., I. Gultepe, and P. King, 2004: Analysis and modeling of an extremely dense fog event in southern Ontario. J. Appl. Meteor., 43, 3–16, doi: 10.1175/1520-0450(2004)043<0003:AAMOAE>2.0.CO;2.
Payra, S., and M. Mohan, 2014: Multirule based diagnostic approach for the fog predictions using WRF modelling tool. Adv. Meteor., 2014, 456065, doi: 10.1155/2014/456065.
Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 1383–1395, doi: 10.1175/JAM2539.1.
Radi, A., A. A. Al-Katheri, and K. Al-Chergui, 2008: Evaluation of United Arab Emirates WRF two-way nested model on a set of thick coastal fog situations. [Accessed 10 July 2017 at http://www2.mmm.ucar.edu/wrf/users/workshops/WS2008/ab stracts/P8-06.pdf].
Rémy, S., O. Pannekoucke, T. Bergot, et al., 2012: Adaptation of a particle filtering method for data assimilation in a 1D numerical model used for fog forecasting. Quart. J. Roy. Meteor. Soc., 138, 536–551, doi: 10.1002/qj.v138.663.
Román-Cascón, C., C. Yagüe, M. Sastre, et al., 2012: Observations and WRF simulations of fog events at the Spanish Northern Plateau. Adv. Sci. Res., 8, 11–18, doi: 10.5194/asr-8-11-2012.
Román-Cascón, C., G. J. Steeneveld, C. Yagüe, et al., 2016: Forecasting radiation fog at climatologically contrasting sites: Evaluation of statistical methods and WRF. Quart. J. Roy. Meteor. Soc., 142, 1048–1063, doi: 10.1002/qj.2016.142.issue-695.
Skamarock, W. C., J. B. Klemp, J. Dudhia, et al., 2008: A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR/TN-475+STR, doi: 10.5065/D68S4MVH.
Steeneveld, G. J., R. J. Ronda, and A. A. M. Holtslag, 2015: The challenge of forecasting the onset and development of radiation fog using mesoscale atmospheric models. Bound.-Layer Meteor., 154, 265–289, doi: 10.1007/s10546-014-9973-8.
Stoelinga, M. T., and T. T. Warner, 1999: Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an East Coast winter precipitation event. J. Appl. Meteor., 38, 385–404, doi: 10.1175/1520-0450(1999)038<0385:NMSMSO>2.0.CO;2.
Stolaki, S., I. Pytharoulis, and T. Karacostas, 2012: A study of fog characteristics using a coupled WRF–COBEL model over Thessaloniki airport, Greece. Pure Appl. Geophys., 169, 961–981, doi: 10.1007/s00024-011-0393-0.
Tang, Y. M., R. Capon, R. Forbes, et al., 2009: Fog prediction using a very high resolution numerical weather prediction model forced with a single profile. Meteor. Appl., 16, 129–141, doi: 10.1002/met.v16:2.
Tardif, R., 2007: The impact of vertical resolution in the explicit numerical forecasting of radiation fog: A case study. Pure Appl. Geophys., 164, 1221–1240, doi: 10.1007/s00024-007-0216-5.
Tardif, R., and R. M. Rasmussen, 2007: Event-based climatology and typology of fog in the New York city region. J. Appl. Meteor. Climatol., 46, 1141–1168, doi: 10.1175/JAM2516.1.
Thompson, G., P. R. Field, R. M. Rasmussen, et al., 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115, doi: 10.1175/2008MWR2387.1.
Tudor, M., 2010: Impact of horizontal diffusion, radiation and cloudiness parameterization schemes on fog forecasting in valleys. Meteor. Atmos. Phys., 108, 57–70, doi: 10.1007/s00703-010-0084-x.
Van der Velde, I. R., G. J. Steeneveld, B. G. J. W. Schreur, et al., 2010: Modeling and forecasting the onset and duration of severe radiation fog under frost conditions. Mon. Wea. Rev., 138, 4237–4253, doi: 10.1175/2010MWR3427.1.
von Glasow, R., and A. Bott, 1999: Interaction of radiation fog with tall vegetation. Atmos. Environ., 33, 1333–1346, doi: 10.1016/S1352-2310(98)00372-0.
Yuan, X., and Z. H. Chen, 2013: Statistics and monitoring analysis of advection fog at Shanghai Pudong Airport. J. Meteor. Sci., 33, 95–101, doi: 10.3969/2012jms.0149. (in Chinese)
Zhou, B. B., 2011: Introduction to A New Fog Diagnostic Scheme. NCEP Office Note 466, 43 pp. [Accessed 10 July 2017 at www.emc.ncep.noaa.gov/officenotes/newernotes/on466.pdf].
Zhou, B. B., and J. Du, 2010: Fog prediction from a multimodel mesoscale ensemble prediction system. Wea. Forecasting, 25, 303–322, doi: 10.1175/2009WAF2222289.1.