Numerical simulation of tidal flow in Danang Bay Based on non-hydrostatic shallow water equations
Tóm tắt
This paper presents a numerical simulation of the tidal flow in Danang Bay (Vietnam) based on the non-hydrostatic shallow water equations. First, to test the simulation capability of the non-hydrostatic model, we have made a test simulation comparing it with the experiment by Beji and Battjes 1993, Coastal Engineering 23, 1–16. Simulation results for this case are compared with both the experimental data and calculations obtained from the traditional hydrostatic model. It is shown that the non-hydrostatic model is better than the hydrostatic model when the seabed topography variation is complex. The usefulness of the non-hydrostatic model is father shown by successfully simulating the tidal flow of Danang Bay.
Tài liệu tham khảo
Briggs, MJ, Synolakis, CE, Harkins, GS, Green, DR: Laboratory experiments of tsunami runup on a circular island. Pure Appl. Geophys. 144, 569–593 (1995).
Casulli, V: A semi-implicit finite difference method for non-hydrostatic free surface flows. Int. J. Numer. Methods Fluids. 30(4), 425–440 (1999).
Chen, Q, Kirby, JT, Dalrymple, RA, Kennedy, AB, Chawla, A: Boussinesq modeling of wave transformation, breaking, and runup. II: 2D. J. Waterw. Port Coast. Ocean Eng. 126(1), 48–56 (2000).
Dodd, N: Numerical model of wave run-up, overtopping, and regeneration. J. Waterw. Port Coast. Ocean Eng. 124(2), 73–81 (1998).
Horrillo, J, Kowalik, Z, Shigihara, Y: Wave Dispersion Study in the Indian Ocean-Tsunami of December 26, 2004. Marine Geodesy. 29(1), 149–166 (2006).
Imamura, F: Review of tsunami simulation with a finite difference method. In: Yeh, H, Liu, P, Synolakis C (eds.)Long-wave Runup Models, pp. 25–42. World Scientific, Singapore (1996).
Keller, HB: A new difference scheme for parabolic problems. In: Hubbard, B (ed.)Numerical Solutions of Partial Differential Equations, II, pp. 327–350. Academic Press, New York (1971).
Kowalik, Z, Knight, W, Logan, T, Whitmore, P: Numerical modeling of the global tsunami: Indonesian tsunami of 26 December 2004. Sci. Tsunami Hazards. 23(1), 40–56 (2005).
Kowalik, Z, Murty, TS: Numerical Modeling of Ocean Dynamics. World Scientific, Singapore (1993).
Lynett, PJ, Wu, TR, Liu, PLF: Modeling wave runup with depth-integrated equations. Coast. Eng. 46(2), 89–107 (2002).
Mader, CL: Numerical Modeling of Water Waves. CRC Press, New York (1993).
Madsen, PA, Srensen, OR, Schaffer, HA: Surf zone dynamics simulated by a Boussinesq type model. Part I. Model description and cross-shore motion of regular waves. Coast. Eng. 32(4), 255–287 (1997).
Peregrine, DH: Long waves on a beach. J. Fluid Mech. 27(4), 815–827 (1967).
Stelling, GS, Duinmeijer, SPA: A staggered conservative scheme for every Froude number in rapidly varied shallow water flows. Int. J. Numer. Methods Fluids. 43(12), 1329–1354 (2003).
Stelling, GS, Zijlema, M: An accurate and efficient finite-difference algorithm for non-hydrostatic free-surface flow with application to wave propagation. Int. J. Numer. Methods Fluids. 43(1), 1–23 (2003).
Synolakis, CE: The runup of solitary waves. J. Fluid Mech. 185, 523–545 (1987).
Van der, Vorst, HA: Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 13(2), 631–644 (1992).
Walters, RA: A semi-implicit finite element model for non-hydrostatic (dispersive) surface waves. Int. J. Numer. Methods Fluids. 49(7), 721–737 (2005).
Yamazaki, Y, Kowalik, Z, Cheung, KF: Depth-integrated, non-hydrostatic model for wave breaking and run-up. Int. J. Numer. Methods Fluids. 61(5), 473–497 (2008).
Yamazaki, Y, Wei, Y, Cheung, KF, Curtis, GD: Forecast of tsunamis generated at the JapanKurilKamchatka source region. Nat. Hazards. 38(3), 411–435 (2006).
Zangping, Wei, Yafei, Jia: A depth-integrated non-hydrostatic finite element model for wave propagation. Int. J. Numer. Model. Fluids. 73, 976–1000 (2013).
Zhou, JG, Causon, DM, Mingham, CG, Ingram, DM: The surface gradient method for the treatment of source terms in the shallow-water equations. J. Comput. Phys. 168(1), 1–25 (2001).
Zijlema, M, Stelling, GS: Efficient computation of surf zone waves using the nonlinear shallow water equations with non-hydrostatic pressure. Coast. Eng. 55(10), 780–790 (2008).