Numerical simulation of magnetohydrodynamic flow in a toroidal duct of square cross-section

International Journal of Heat and Fluid Flow - Tập 32 - Trang 1120-1128 - 2011
S. Vantieghem1, B. Knaepen1
1Statistical and Plasma Physics, Université Libre de Bruxelles, Campus Plaine, CP 231, B-1050 Brussels, Belgium

Tài liệu tham khảo

Baylis, 1971, MHD flow in an annular channel: theory and experiment, J. Fluid Mech., 3, 423, 10.1017/S002211207100168X Hunt, 1965, Magnetohydrodynamic flow in rectangular ducts, II. J. Fluid Mech., 23, 563, 10.1017/S0022112065001544 Jeong, 1995, On the identification of a vortex, J. Fluid Mech., 285, 69, 10.1017/S0022112095000462 Kim, 1985, Application of a fractional-step method to incompressible Navier–Stokes equations, J. Comput. Phys., 59, 308, 10.1016/0021-9991(85)90148-2 Kinet, 2009, Instabilities and transition in magnetohydrodynamic flows in ducts with electrically conducting walls, Phys. Rev. Lett., 103, 10.1103/PhysRevLett.103.154501 Krasnov, 2004, Numerical study of the instability of the Hartmann layer, J. Fluid Mech., 504, 183, 10.1017/S0022112004008006 Krasnov, 2004, Numerical study of the instability of the Hartmann layer, J. Fluid Mech., 504, 183, 10.1017/S0022112004008006 Krasnov, 2010, Optimal linear growth in magnetohydrodynamic duct flow, J. Fluid Mech., 653, 273, 10.1017/S0022112010000273 Lingwood, 1999, On the stability of the Hartmann layer, Phys. Fluids, 11, 2058, 10.1063/1.870068 Moresco, 2004, Experimental study of the instability of the Hartmann layer, J. Fluid Mech., 504, 167, 10.1017/S0022112004007992 Moser, 1987, The effects of curvature in wall-bounded turbulent flows, J. Fluid Mech., 175, 479, 10.1017/S0022112087000491 Moureau, 2011, Design of a massively parallel CFD code for complex geometries, CR Mécanique, 339, 141, 10.1016/j.crme.2010.12.001 Nagata, 2004, Spatio-temporal evolution of coherent vortices in wall turbulence with streamwise curvature, J. Turbul., 5, 1 Ni, 2007, A current density conservative scheme for incompressible MHD flows at a low magnetic reynolds number. Part II: On an arbitrary collocated mesh, J. Comput. Phys., 227, 205, 10.1016/j.jcp.2007.07.023 Ni, 2007, A current density conservative scheme for incompressible MHD flows at a low magnetic reynolds number. Part I: on rectangular collocated grid system, J. Comput. Phys., 221, 174, 10.1016/j.jcp.2007.07.025 Reed, 1989, Sidewall flow instabilities in liquid metal flow under blanket relevant conditions, Fusion Technol., 15, 705, 10.13182/FST89-A39780 Roberts, 1967 Tabeling, 1981, Magnetohydrodynamic secondary flows at high Hartmann number, J. Fluid Mech., 103, 225, 10.1017/S0022112081001316 Thess, 2007, Transition from two-dimensional to three-dimensional magnetohydrodynamic turbulence, J. Fluid Mech., 579, 383, 10.1017/S0022112007005277