Numerical simulation of contaminant transport in groundwater using software tools of $$r^3t$$ r 3 t
Tóm tắt
Từ khóa
Tài liệu tham khảo
Aizinger, V., Dawson, C., Cockburn, B., Castillo, P.: The local discontinuous Galerkin method for contaminant transport. Adv. Water Resour. 24(1), 73–87 (2001)
Attinger, S., Dimitrova, J., Kinzelbach, W.: Homogenization of the transport behavior of nonlinearly adsorbing pollutants in physically and chemically heterogeneous aquifers. Adv. Water Resour. 32(5), 767–777 (2009)
Bastian, P., Birken, K., Eckstein, K., Johannsen, K., Lang, S., Neuss, N., Rentz-Reichert, H.: UG—a flexible software toolbox for solving partial differential equations. Comput. Vis. Sci. 1(1), 27–40 (1997)
Bastian, P., Birken, K., Johannsen, K., Lang, S., Reichenberger, V., Wieners, C., Wittum, G., Wrobel, C.: A parallel software-platform for solving problems of partial differential equations using unstructured grids and adaptive multigrid methods. In: Krause, E., Jäger, W. (eds.) High Performance Computing in Science and Engineering, pp. 326–339. Springer, New York (1999)
Bastian, P., Wittum, G.: Robustness and adaptivity: the ug concept. In: Wesseling, P., Hemker, P. (eds.) Multigrid Methods IV. Proceedings of the Fourth European Multigrid Conference, Amsterdam. Birkhäuser, Basel (1994)
Bateman, H.: The solution of a system of differential equations occurring in the theory of radio-active transformations. Camb. Philos. Soc. Proc. 5, 423–427 (1910)
Bauer, P., Attinger, S., Kinzelbach, W.: Transport of a decay chain in homogenous porous media: analytical solutions. J. Contam. Hydrol. 49(3–4), 217–239 (2001)
Bear, J.: Dynamics of Fluids in Porous Media. Dover, New York (1988)
Cai, Z., Mandel, J., McCormick, S.: The finite volume element method for diffusion equations on general triangulations. SIAM J. Numer. Anal. 28(2), 392–402 (1991)
Schneider, A. (ed.): Advancing the codes $$d^3f$$ d 3 f and $$r^3t$$ r 3 t . Final report. GRS-292, ISBN-978-3-939355-68-7. GRS, Braunschweig (2012)
Fein, E.: $$d^3f$$ d 3 f —ein Programmpaket zur Modellierung von Dichteströmungen. GRS-139, ISBN 3-923875-97-5. GRS, Braunschweig (1998)
Fein, E.: $$r^3t$$ r 3 t —a program suite to model transport and retention in porous media. GRS-192, ISBN-3-391995-60-7. GRS, Braunschweig (2003)
Flügge, J., Küntzel, M., Schäfer, T., Gaus, I., Noseck, U.: Modeling colloid-bound radionuclide transport at the Grimsel test site. In: International Groundwater Symposium by IAHR, Valencia, Spain, pp. 1–29 (2010)
Frolkovič, P.: Discretization. In: Fein, E. (ed.) $$D^3F$$ D 3 F - ein Programmpaket zur Modellierung von Dichteströmungen, GRS-139, Braunschweig (1998)
Frolkovič, P.: Flux-based method of characteristics for contaminant transport in flowing groundwater. Comput. Vis. Sci. 5(2), 73–83 (2002)
Frolkovič, P.: The simulator and the methods used. In E. Fein, editor, $$R^3T$$ R 3 T —a program suite to model transport and retention in porous media, GRS-192, Braunschweig, pp. 99-169 (2003)
Frolkovič, P.: Flux-based method of characteristics for coupled transport equations in porous media. Comput. Vis. Sci. 6(4), 173–184 (2004)
Frolkovič, P., Geiser, J.: Numerical simulations of radionuclides transport in double porosity media with sorption. In: Handlovičova, A., et al. (eds.) Algoritmy 2000, pp. 28–36. Slovak University of Technology, Bratislava (2000)
Frolkovič, P., Geiser, J.: Discretization methods with discrete minimum and maximum property for convection dominated transport in porous media. In: Dimov, I., et al. (eds.) Numerical Methods and Applications. Lecture Notes in Computer Science, vol. 2542, pp. 445–453. Springer, Berlin, Heidelberg (2003)
Frolkovič, P., Kačur, J.: Semi-analytical solutions of a contaminant transport equation with nonlinear sorption in 1d. Comput. Geosci. 10(3), 265–342 (2006)
Frolkovič, P., Lampe, M., Wittum, G.: $$r^3t$$ r 3 t - software package for numerical simulations of radioactive contaminant transport in groundwater. In: International Topical Meeting on Mathematics and Computation. Avignon (2005). Wir Preprint 08/2005
Frolkovič, P., Mikula, K.: Flux-based level set method: a finite volume method for evolving interfaces. Appl. Numer. Math. 57(4), 436–454 (2007)
Frolkovič, P., Mikula, K.: High-resolution flux-based level set method. SIAM J. Sci. Comput. 29(2), 579–597 (2007)
Geiser, J.: Lecture on discretization methods for system of convection-diffusion-reaction equations and applications realized with parallel computers. In: Workshop on Parallel and Adaptive Computing, Hohenwart (2003)
Geiser, J.: Diskretisierungsverfahren für Systeme von Konvektions-Diffusions-Dispersions-Reaktions-Gleichungen und Anwendungen. PhD thesis, University of Heidelberg (2004)
Held, R.J., Celia, M.A.: Pore-scale modeling and upscaling of nonaqueous phase liquid mass transfer. Water Resour. Res. 37(3), 539–549 (2001)
LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002)
Neubauer, T., Bastian, P.: On a monotonicity preserving Eulerian–Lagrangian localized adjoint method for advection–diffusion equations. Adv. Water Resour. 28(12), 1292–1309 (2005)
Neuss, N.: A new sparse matrix storage methods for adaptive solving of large systems of reaction-diffusion-transport equations. In: Keil, F., et al. (eds.) Scientific Computing in Chemical Engineering II, pp. 175–182. Springer, Berlin (1999)
Quezada, C.R., Clement, T.P., Lee, K.-K.: Generalized solution to multi-dimensional multi-species transport equations coupled with a first-order reaction network involving distinct retardation factors. Adv. Water Resour. 27(5), 507–520 (2004)
Radu, F., Suciu, N., Hoffmann, J., Vogel, A., Kolditz, O., Park, C.-H., Attinger, S.: Accuracy of numerical simulations of contaminant transport in heterogeneous aquifers: a comparative study. Adv. Water Resour. 34(1), 47–61 (2011)
Restelli, M., Bonaventura, L., Sacco, R.: A semi-Lagrangian discontinuous Galerkin method for scalar advection by incompressible flows. J. Comput. Phys. 216(1), 195–215 (2006)
Russell, T.F., Celia, M.A.: An overview of research on Eulerian–Lagrangian localized adjoint methods (ELLAM). Adv. Water Resour. 25, 1215–1231 (2002)