Numerical simulation of a stroke: Computational problems and methodology

Progress in Biophysics and Molecular Biology - Tập 97 - Trang 40-53 - 2008
Stéphane Descombes1, Thierry Dumont2
1Unité de Mathématiques Pures et Appliquées, CNRS UMR 5669, Ecole Normale Supérieure de Lyon, 46 allée d’Italie, 69364 Lyon cedex 07, France
2Université de Lyon, Université Lyon1, CNRS, UMR 5208, Institut Camille Jordan, Bâtiment du Doyen Jean Braconnier, 43, blvd du 11 novembre 1918, F-69200 Villeurbanne Cedex, France

Tài liệu tham khảo

Akrivis, 1999, Implicit–explicit multistep methods for quasilinear parabolic equations, Numer. Math., 82, 521, 10.1007/s002110050429 Demmel, 1999, A supernodal approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20, 720, 10.1137/S0895479895291765 Descombes, 2001, Convergence of a splitting method of high order for reaction–diffusion systems, Math. Comput., 70, 1481, 10.1090/S0025-5718-00-01277-1 Descombes, 2004, Operator splitting for nonlinear reaction–diffusion systems with an entropic structure: singular perturbation and order reduction, Numer. Math., 97, 667, 10.1007/s00211-003-0496-3 Descombes, 2003, Operator splitting for stiff nonlinear reaction–diffusion systems: order reduction and application to spiral waves, 386 Dronne, M.-A., Boissel, J.-P., Grenier, E., 2006. A mathematical model of ion movements in grey matter during a stroke. J. Theor. Biol. Dronne, 2007, Role of astrocytes in grey matter during a stroke: a modelling approach, Brain Research, 1138, 231, 10.1016/j.brainres.2006.12.062 Dumont, T., 2007. Numerical software for reaction–diffusion systems. Source code and documentation at: 〈http://ciel.ccsd.cnrs.fr/〉. Hairer, E., Wanner, G., 1996. Solving ordinary differential equations. II. Stiff and differential-algebraic problems. second ed. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin. Halpern, 2006, Absorbing boundary conditions and optimized Schwarz waveform relaxation, BIT, 46, S21, 10.1007/s10543-006-0090-z Marchuk, 1990, Splitting and alternating direction methods, vol. I, 197 Murray, J.D., 2002. Mathematical biology. I. An introduction. third ed. Interdisciplinary Applied Mathematics, vol. 17. Springer, New York. Murray, J.D., 2003. Mathematical biology. II. Spatial models and biomedical applications. third ed. Interdisciplinary Applied Mathematics, vol. 18. Springer, New York. Ropp, 2005, Stability of operator splitting methods for systems with indefinite operators: reaction–diffusion systems, J. Comput. Phys., 203, 449, 10.1016/j.jcp.2004.09.004 Shapiro, 2001, Osmotic forces and gap junctions in spreading depression: a computational model, J. Comput. Neurosci., 10, 877, 10.1023/A:1008924227961 Strang, 1968, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506, 10.1137/0705041