Numerical simulation of a stroke: Computational problems and methodology
Tài liệu tham khảo
Akrivis, 1999, Implicit–explicit multistep methods for quasilinear parabolic equations, Numer. Math., 82, 521, 10.1007/s002110050429
Demmel, 1999, A supernodal approach to sparse partial pivoting, SIAM J. Matrix Anal. Appl., 20, 720, 10.1137/S0895479895291765
Descombes, 2001, Convergence of a splitting method of high order for reaction–diffusion systems, Math. Comput., 70, 1481, 10.1090/S0025-5718-00-01277-1
Descombes, 2004, Operator splitting for nonlinear reaction–diffusion systems with an entropic structure: singular perturbation and order reduction, Numer. Math., 97, 667, 10.1007/s00211-003-0496-3
Descombes, 2003, Operator splitting for stiff nonlinear reaction–diffusion systems: order reduction and application to spiral waves, 386
Dronne, M.-A., Boissel, J.-P., Grenier, E., 2006. A mathematical model of ion movements in grey matter during a stroke. J. Theor. Biol.
Dronne, 2007, Role of astrocytes in grey matter during a stroke: a modelling approach, Brain Research, 1138, 231, 10.1016/j.brainres.2006.12.062
Dumont, T., 2007. Numerical software for reaction–diffusion systems. Source code and documentation at: 〈http://ciel.ccsd.cnrs.fr/〉.
Hairer, E., Wanner, G., 1996. Solving ordinary differential equations. II. Stiff and differential-algebraic problems. second ed. Springer Series in Computational Mathematics, vol. 14. Springer, Berlin.
Halpern, 2006, Absorbing boundary conditions and optimized Schwarz waveform relaxation, BIT, 46, S21, 10.1007/s10543-006-0090-z
Marchuk, 1990, Splitting and alternating direction methods, vol. I, 197
Murray, J.D., 2002. Mathematical biology. I. An introduction. third ed. Interdisciplinary Applied Mathematics, vol. 17. Springer, New York.
Murray, J.D., 2003. Mathematical biology. II. Spatial models and biomedical applications. third ed. Interdisciplinary Applied Mathematics, vol. 18. Springer, New York.
Ropp, 2005, Stability of operator splitting methods for systems with indefinite operators: reaction–diffusion systems, J. Comput. Phys., 203, 449, 10.1016/j.jcp.2004.09.004
Shapiro, 2001, Osmotic forces and gap junctions in spreading depression: a computational model, J. Comput. Neurosci., 10, 877, 10.1023/A:1008924227961
Strang, 1968, On the construction and comparison of difference schemes, SIAM J. Numer. Anal., 5, 506, 10.1137/0705041