Numerical simulation of a high-speed landslide in Chenjiaba, Beichuan, China

Tao Huang1, Min Ding2,1, Tao She3, Shujun Tian4, Jiangtao Yang1
1School of Environment and Resources, Southwest University of Science and Technology, Mianyang, China
2Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
3Institute of Exploration Technology, Chinese Academy of Geological Sciences, Chengdu, China
4School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Allen SK, Schneider D, Owens IF (2009) First approaches towards modelling glacial hazards in the Mount Cook region of New Zealand's Southern Alps. Natural Hazards and Earth System Sciences 9(2): 481–499. https://doi.org/10.5194/ nhess-9-481-2009

Bühler Y, Christen M, Kowalski J, et al. (2011) Sensitivity of snow avalanche simulations to digital elevation model quality and resolution. Annals of Glaciology 52(58): 72–80. https:// doi.org/10.3189/172756411797252121

Bühler Y, Hüni A, Christen M, et al. (2009) Automated detection and mapping of avalanche deposits using airborne optical remote sensing data. Cold Regions Science and Technology 57(2): 99–106. https://doi.org/10.1016/j. coldregions.2009.02.007

Casteller A, Christen M, Villalba R, et al. (2008) Validating numerical simulations of snow avalanches using dendrochronology: the Cerro Ventana event in Northern Patagonia. Argentina. Natural Hazards and Earth System Sciences 8(3): 433–443. https://doi.org/10.5194/nhess-8-433-2008

Chang KJ, Taboada A (2009) Discrete element simulation of the Jiufengershan rock-and-soil avalanche triggered by the 1999 Chi-Chi earthquake. Journal of Geophysical Research Earth Surface 114(F4): 171–183. https://doi.org/10.1029/ 2008JF001075

Christen M, Kowalski J, Bartelt P (2010) RAMMS: Numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Regions Science and Technology 63(1-2):1–14. https://doi.org/10.1016/j.coldregions.2010.04.005

Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Engineering Geology 64(1): 65–87.https://doi.org/10.1016/S0013-7952(01)00093-X

Ding MT, Tian SJ (2013) Landslide Debris Flow Risk Assessment and Application. Science Press, Beijing, China, pp 12–13. (in Chinese)

Fell R, Corominas J, Bonnard C, et al. (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology 102(3): 85–98. https://doi. org/10.1016/j.enggeo.2008.03.022

Fell R, Hartford D (1997) Landslide risk management Landslide risk assessment Balkema, Rotterdam: 51–109

Fischer J-T, Kowalski J, Pudasaini SP (2012) Topographic curvature effects in applied avalanche modeling. Cold Regions Science and Technology 74-75(s74-75): 21–30. https://doi.org/10.1016/j.coldregions.2012.01.005

Graf C, Mcardell BW (2011) Debris-flow monitoring and debrisflow runout modelling before and after construction of mitigation measures: an example from an instable zone in the Southern Swiss Alps. In: Lambiel C, Reynard E, Scapozza C (eds) La géomorphologie alpine: entre patrimoine et contrainte. Actes du colloque de la Société Suisse de Géomorphologie, 3–5 septembre 2009, Olivone. Géovisions 36. Université, Institut de géographie, Lausanne, pp 243–258.

Hungr O, Fell R, Couture R, et al. (2005) Landslide risk management. Taylor & Francis, London, p 763.

Hungr O, Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Canadian Geotechnical Journal 32(4): 610–623. https://doi.org/ 10.1139/t95-063

Hu KH, Wei FQ (2005) Numerical-simulation-based debris flow risk zoning. Journal of Natural Disasters 14: 10–14. (In Chinese)

Jakob DM, Hungr O (2005) Debris-flow Hazards and Related Phenomena. Springer, Berlin Heidelberg, Germany.

Kowalski, J (2008) Two-phase Modeling of debris flows. Ph.D. Thesis. Swiss Federal Institute of Technology, Zurich.

Leroi, E (1996) Landslide hazard - Risk maps at different scales: Objectives, tools and developments, In K. Senneset (ed.), Landslides. Balkema, Rotterdam, pp 35–51.

Luna BQ (2007) Assessment and modelling of two lahars caused by" Hurricane Stan" at Atitlan, Guatemala, October 2005. MSc. thesis, University of Oslo, Oslo, Norway.

Mcdougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Canadian Geotechnical Journal 41(6): 1084–1097. https://doi.org/10.1139/t04-052

O'Brien JS, Julien PY, Fullerton WT (1993) Two-Dimensional Water Flood and Mudflow Simulation Journal of Hydraulic Engineering 119(2): 244–261. https://doi.org/10.1061/ (ASCE)0733-9429(1993)119:2(244)

Poisel R, Preh A (2008) 3D landslide run out modelling using the Particle Flow Code PFC3D. https://doi.org/10.1201/9780203885284-c110

Sassa K (1989) Special lecture: geotechnical model for the motion of landslides: Proc 5th International Symposium on Landslides, Lausanne, 10–15 July 1988V1, P37–55. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts 26(2):88.https://doi.org/10.1016/0148-9062(89)90311-2

Schneider D, Bartelt P, Caplan-Auerbach J, Christen M, Huggel C, McArdell BW (2010) Insights into rock-ice avalanche dynamics by combined analysis of seismic recordings and a numerical avalanche model Journal of Geophysical Research: Earth Surface 115(F4): 137–139. https://doi.org/10.1029/2010JF001734

Sosio R, Crosta GB, Hungr O (2012) Numerical modeling of debris avalanche propagation from collapse of volcanic edifices. Landslides 9(3): 315–334. https://doi.org/ 10.1007/s10346-011-0302-8

Taboada A, Estrada N (2009) Rock-and-soil avalanches: Theory and simulation. Journal of Geophysical Research, American Geophysical Union 114 pp. F03004. https://doi.org/10.1007/ s10.1029/2008JF001072

Tommasi P, Campedel P, Consorti C, et al. (2008) A discontinuous approach to the numerical modelling of rock avalanches. Rock Mechanics and Rock Engineering 41(1): 37–58. https://doi.org/10.1007/s00603-007-0133-z

Wang SN, Xu WY, Shi C, et al. (2017) Run-out prediction and failure mechanism analysis of the Zhenggang deposit in southwestern China. Landslides 14(2): 719–726. https://doi.org/10.1007/s10346-016-0770-y

Wang YT, Seijmonsbergen AC, Bouten W, et al. (2015) Using statistical learning algorithms in regional landslide susceptibility zonation with limited landslide field data. Journal of Mountain Science 12(2): 268–288. https://doi.org/10.1007/s11629-014-3134-x

Wang Y, Li X, Wang SX, et al. (2012) PFC Simulation of Progressive Failure Process of Landslide. Journal of Yangtze River Scientific Research Institute 29: 46–52 (In Chinese)

Xie NM, Xin JH, Liu SF (2014) China’s regional meteorological disaster loss analysis and evaluation based on grey cluster model. Natural Hazards 71(2): 1067–1089. https://doi. org/10.1007/s11069-013-0662-6

Xu, C, Xu X, Yao X, et al. (2014). Three (nearly) complete inventories of landslides triggered by the may 12, 2008 Wenchuan mw 7.9 earthquake of china and their spatial distribution statistical analysis. Landslides 11(3): 441–461. https://doi.org/10.1007/s10346-013-0404-6

Yin YP (2009a) Features of landslides triggered by the Wenchuan Earthquake. Journal of Engineering Geology 17: 29–38. (In Chinese)

Yin YP (2009b) Rapid and Long Run-out Features of Landslides Triggered by The Wenchuan Earthquake. Journal of Engineering Geology 17(2): 153–166. (In Chinese)

Zhu SB, Shi YL, Lu M, et, al. (2013) Dynamic mechanisms of earthquake-triggered landslides. Science China (Earth Sciences) 56(10): 1769–1779. https://doi.org/10.1007/s11430-013-4582-9