Mô phỏng số và nghiên cứu thực nghiệm quy trình nấu chảy hồ chân không (VAR) cho hợp kim siêu bền GH4742 cỡ lớn

Journal of Materials Research and Technology - Tập 24 - Trang 2828 - 2023
Shufeng Yang1,2, Qiang Tian3, Ping Yu3, Wei Liu1,2, Shulei Yang1,2, Jingshe Li1,2
1State Key Laboratory of Advanced Metallurgy, University of Science and Technology Beijing, Beijing 100083, PR China
2School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
3Department of High-Temperature Materials, Central Iron and Steel Research Institute, Beijing, 100081, PR China

Tóm tắt

Mô hình hóa số và thí nghiệm công nghiệp được sử dụng để nghiên cứu toàn bộ quy trình nấu chảy hồ chân không (VAR) hợp kim siêu bền GH4742 cỡ 660 mm. Để tính toán trường điện từ, trường dòng chảy, trường nhiệt độ và sự thay đổi hình dạng của bể chảy trong toàn bộ quy trình VAR, một mô hình đối xứng trục 2D với các trường vật lý đa liên kết tương thích với các thí nghiệm công nghiệp đã được xây dựng. Cấu trúc vi mô và điều kiện phân bố nguyên tố trong phôi GH4742 lớn đã được phân tích kết hợp với thí nghiệm mổ phôi công nghiệp, và những vị trí có khả năng xảy ra khuyết tật freckle nhất đã được dự đoán. Theo nghiên cứu, bể chảy có hai trường dòng chảy theo chiều kim đồng hồ bị ảnh hưởng bởi lực nổi và lực Lorentz. Độ sâu của bể chảy từ từ tăng lên theo quá trình chảy, với độ sâu bể chảy tối đa là 0.32 m và độ rộng vùng bột là 0.16 m. Mặc dù sự phân bố nguyên tố của phôi chủ yếu là đồng nhất, nhưng có sự phân tách vi mô giữa các nhánh. Nơi freckle có khả năng xuất hiện nhất, tại tọa độ (0.322, 0.075), giá trị Rayleigh đạt 1.1. Đối với hình dạng của bể chảy và khoảng cách giữa các nhánh trong toàn bộ quá trình nấu chảy, các kết quả của thí nghiệm mổ phôi công nghiệp và kết quả mô phỏng cho thấy sự thống nhất tốt, chứng minh độ chính xác của tính toán về lịch sử nhiệt và cấu trúc vi mô đông đặc trong toàn bộ quá trình chảy. Hơn nữa, triển vọng kết hợp mô phỏng số với cơ sở dữ liệu vật liệu đặc biệt để dự đoán khuyết tật một cách chính xác được đề xuất.

Từ khóa

#Vacuum arc remelting #GH4742 superalloy #Numerical simulation #Freckle

Tài liệu tham khảo

[1] X.D. Lu J.H. Du Q. Deng Z.Y. Zhong Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy J Alloys Compd 486 2009 195 198 Lu XD, Du JH, Deng Q, Zhong ZY. Effect of slow cooling treatment on hot deformation behavior of GH4742 superalloy. Journal of alloys and compounds 2009;486:195-198. [2] H. Qin Q. Tian W. Zhang Q. Du H. Li X. Liu P. Yu Microstructure evolution of GH4742 Ni-based superalloy during hot forming J Mater Eng Perform 31 2022 5652 5667 Qin H, Tian Q, Zhang W, Du Q, Li H, Liu X, Yu P. Microstructure Evolution of GH4742 Ni-Based Superalloy during Hot Forming. Journal of Materials Engineering and Performance 2022;31:5652-5667. [3] W.T. Carter R.M.F. Jones Nucleated casting for the production of large superalloy ingots JOM 57 2005 52 57 Carter WT, Jones RMF. Nucleated casting for the production of large superalloy ingots. JOM 2005;57:52-57. [4] N. Giesselmann A. Rückert M. Eickhoff H. Pfeifer J. Tewes J. Klöwer Coupling of multiple numerical models to simulate electroslag remelting process for alloy 718 ISIJ Int 55 2015 1408 1415 Giesselmann N, Ruckert A, Eickhoff M, Pfeifer H, Tewes J, Klower J. Coupling of multiple numerical models to simulate electroslag remelting process for alloy 718. ISIJ International 2015;55:1408-1415. [5] Z. Wang S. Huang B. Zhang L. Wang G. Zhao Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy Acta Metall Sin 55 2018 417 426 Wang Z, Huang S, Zhang B, Wang L, Zhao G. Study on freckle of a high-alloyed GH4065 nickel base wrought superalloy. Acta Metall Sin 2018;55:417-426. [6] J.F. Grignard A. Soller J. Jourdan J.-P. Bellot A. Jardy On the formation of white-spot defects in a superalloy VAR ingot Adv Eng Mater 13 2011 563 569 Grignard JF, Soller A, Jourdan J, Bellot J-P, Jardy A. On the Formation of White-Spot Defects in a Superalloy VAR Ingot. Advanced Engineering Materials 2011;13:563-569. [7] H. Fecht D. Furrer Processing of nickel-base superalloys for turbine engine disc applications Adv Eng Mater 2 2000 777 787 Fecht H, Furrer D. Processing of Nickel-Base Superalloys for Turbine Engine Disc Applications. Advanced engineering materials 2000;2:777-787. [8] J. Cui B. Li Z. Liu F. Qi B. Zhang J. Zhang Numerical investigation of segregation evolution during the vacuum arc remelting process of Ni-based superalloy ingots Metals 11 2021 2046 Cui J, Li B, Liu Z, Qi F, Zhang B, Zhang, J. Numerical investigation of segregation evolution during the vacuum arc remelting process of Ni-based superalloy ingots. Metals 2021;11:2046. [9] A. Choudhury State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR ISIJ Int 32 1992 563 574 Choudhury A. State of the art of superalloy production for aerospace and other application using VIM/VAR or VIM/ESR. ISIJ international 1992;32:563-574. [10] L. Nastac Multiscale modelling approach for predicting solidification structure evolution in vacuum arc remelted superalloy ingots Mater Sci Technol 28 2012 1006 1013 Nastac L. Multiscale modelling approach for predicting solidification structure evolution in vacuum arc remelted superalloy ingots. Materials Science and Technology 2012; 28:1006-1013. [11] E. Karimi-Sibaki M. Peyha A. Vakhrushev M. Wu A. Ludwig J. Bohacek B. Preiss A. Kharicha Experimental and numerical investigations of arc plasma expansion in an industrial vacuum arc remelting (VAR) process Sci Rep 12 2022 20405 Karimi-Sibaki E, Peyha M, Vakhrushev A, Wu M, Ludwig A, Bohacek J, Preiss B, Kharicha A. Experimental and numerical investigations of arc plasma expansion in an industrial vacuum arc remelting (VAR) process. Scientific Reports 2022;12:20405. [12] J. Han N. Ren Y. Zhou R. Zhang J. Li X. Huang J. Li Melt convection and macrosegregation in the vacuum arc remelted Ti2AlNb ingot: numerical methods and experimental verification J Mater Process Technol 308 2022 117729 Han J, Ren N, Zhou Y, Zhang R, Li J, Huang X, Li J. Melt convection and macrosegregation in the vacuum arc remelted Ti2AlNb ingot: Numerical methods and experimental verification. Journal of Materials Processing Technology 2022;308:117729. [13] Y. Wang L. Zhang J. Zhang Y. Zhou T. Liu Y. Ren D. Jiang Simulation of solidification structure during vacuum arc remelting using cellular Automaton− finite element method Steel Res Int 93 2022 2100408 Wang Y, Zhang L, Zhang J, Zhou Y, Liu T, Ren Y, Jiang D. Simulation of Solidification Structure During Vacuum Arc Remelting Using Cellular Automaton− Finite Element Method. steel research international 2022,93:2100408. [14] E. Karimi-Sibaki A. Kharicha M. Abdi A. Vakhrushev M. Wu A. Ludwig J. Bohacek A numerical study on the influence of an axial magnetic field (AMF) on vacuum arc remelting (VAR) process Metall Mater Trans B 52 2021 3354 3362 Karimi-Sibaki E, Kharicha A, Abdi M, Vakhrushev A, Wu M, Ludwig A, Bohacek J. A numerical study on the influence of an axial magnetic field (AMF) on vacuum arc remelting (VAR) process. Metallurgical and Materials Transactions B 2021;52:3354-3362. [15] D.M. Shevchenko R.M. Ward The role of side arcing in the global energy partition during vacuum arc remelting of INCONEL 718 Metall Mater Trans B 40 2009 248 253 Shevchenko DM, Ward RM. The Role of Side Arcing in the Global Energy Partition during Vacuum Arc Remelting of INCONEL 718. Metallurgical and Materials Transactions B 2009;40:248-253. [16] J.J. Beaman L. Felipe Lopez R.L. Williamson Modeling of the vacuum arc remelting process for estimation and control of the liquid pool profile J Dyn Syst Meas Control 136 2014 031007 Beaman JJ, Felipe Lopez L, Williamson RL. Modeling of the vacuum arc remelting process for estimation and control of the liquid pool profile. Journal of Dynamic Systems, Measurement, and Control 2014;136:031007. [17] Y.S. Huang M.S. Yang J.S. Li L.B. Bai Vacuum Arc remelting process of high-alloy bearing steel and multi-scale control of solidification structure, materials science forum 2015 Trans Tech Publications Ltd 817826 817836 Huang YS, Yang MS, Li JS, Bai LB. Vacuum Arc Remelting Process of High-Alloy Bearing Steel and Multi-Scale Control of Solidification Structure, Materials Science Forum. Trans Tech Publications Ltd 2015;817826-817836. [18] X. Xu W. Zhang P.D. Lee Tree-ring formation during vacuum arc remelting of INCONEL 718: Part II. Mathematical modeling Metall Mater Trans 33 2002 1805 1815 Xu X, Zhang W, Lee PD. Tree-ring formation during vacuum arc remelting of INCONEL 718: Part II. Mathematical modeling. Metallurgical and Materials Transactions A 2002;33:1805-1815. [19] H. El Mir A. Jardy J.P. Bellot P. Chapelle D. Lasalmonie J. Senevat Thermal behaviour of the consumable electrode in the vacuum arc remelting process J Mater Process Technol 210 2010 564 572 El Mir H, Jardy A, Bellot JP, Chapelle P, Lasalmonie D, Senevat J. Thermal behaviour of the consumable electrode in the vacuum arc remelting process. Journal of Materials Processing Technology 2010;210:564-572. [20] A. Risacher P. Chapelle A. Jardy J. Escaffre H. Poisson Electric current partition during vacuum arc remelting of steel: an experimental study J Mater Process Technol 213 2013 291 299 Risacher A, Chapelle P, Jardy A, Escaffre J, Poisson H. Electric current partition during vacuum arc remelting of steel: An experimental study. Journal of Materials Processing Technology 2013;213:291-299. [21] P.O. Delzant P. Chapelle A. Jardy A. Matveichev Y. Millet Impact of a transient and asymmetrical distribution of the electric arc on the solidification conditions of the ingot in the VAR process Metals 12 2022 500 Delzant PO, Chapelle P, Jardy A, Matveichev A, Millet Y. Impact of a Transient and Asymmetrical Distribution of the Electric Arc on the Solidification Conditions of the Ingot in the VAR Process. Metals 2022;12:500. [22] D. Zagrebelnyy M.J.M. Krane Segregation development in multiple melt vacuum arc remelting Metall Mater Trans B 40 2009 281 288 Zagrebelnyy D, Krane MJM. Segregation development in multiple melt vacuum arc remelting. Metallurgical and Materials Transactions B 2009;40:281-288. [23] A. Mitchell R.S. Minisandram A.T.I. Allvac Computational analysis of the vacuum arc remelting (VAR) and electroslag remelting (ESR) processes 2010 Mitchell A, Minisandram RS, Allvac ATI. Computational Analysis of the Vacuum Arc Remelting (VAR) and Electroslag Remelting (ESR) Processes. 2010. [24] D. McCulley J. Motley M. Cibula P. King Elucidating the relationship between arc behavior and solidification defects during vacuum arc remelting of superalloys, TMS 2022 151st annual meeting & exhibition supplemental proceedings 2022 Springer International Publishing Cham 994 1003 McCulley D, Motley J, Cibula M, King P. Elucidating the Relationship Between Arc Behavior and Solidification Defects During Vacuum Arc Remelting of Superalloys, TMS 2022 151st Annual Meeting & Exhibition Supplemental Proceedings. Cham: Springer International Publishing 2022: 994-1003. [25] A.D. Brent V.R. Voller K.T.J. Reid Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal Numer Heat Tran 13 1988 297 318 Brent AD, Voller VR, Reid KTJ. Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numerical Heat Transfer, Part A Applications 1988;13:297-318. [26] P.O. Delzant B. Baque P. Chapelle A. Jardy On the modeling of thermal radiation at the top surface of a vacuum arc remelting ingot Metall Mater Trans B 49 2018 958 968 Delzant PO, Baque B, Chapelle P, Jardy A. On the Modeling of Thermal Radiation at the Top Surface of a Vacuum Arc Remelting Ingot. Metallurgical and Materials Transactions B 2018;49:958-968. [27] W. Zhang P.D. Lee M. McLean Numerical simulation of dendrite white spot formation during vacuum arc remelting of INCONEL718 Metall Mater Trans 33 2002 443 Zhang W, Lee PD, McLean M. Numerical simulation of dendrite white spot formation during vacuum arc remelting of INCONEL718. Metallurgical and Materials Transactions 2002;33:443. [28] S. Yang S. Yang J. Qu J. Du Y. Gu P. Zhao N. Wang Inclusions in wrought superalloys: a review Journal of Iron and Steel Research International 28 2021 921 937 Yang S, Yang S, Qu J, Du J, Gu Y, Zhao P, Wang N. Inclusions in wrought superalloys: a review. Journal of Iron and Steel Research International 2021;28: 921-937. [29] J.D. Hunt Steady state columnar and equiaxed growth of dendrites and eutectic Mater Sci Eng 65 1984 75 83 Hunt JD. Steady state columnar and equiaxed growth of dendrites and eutectic. Materials science and engineering 1984;65:75-83. [30] W. Kurz D.J. Fisher Fundamentals of solidification 1984 Trans Tech Publications Switzerland Kurz W and Fisher DJ, Fundamentals of solidification, Trans Tech Publications, Switzerland, 1984. [31] R. Trivedi Interdendritic spacing: Part II. A comparison of theory and experiment[M]. Dynamics of Curved Fronts 1988 Academic Press Trivedi R. Interdendritic spacing: Part II. A comparison of theory and experiment[M]. Dynamics of Curved Fronts. Academic Press, 1988. [32] S. Yang S. Yang W. Liu J. Li J. Gao Y. Wang Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy Int J Miner Metall Mater 30 2023 939 948 Yang S, Yang S, Liu W, Li J, Gao J, Wang Y. Microstructure, segregation and precipitate evolution in directionally solidified GH4742 superalloy. International Journal of Minerals, Metallurgy and Materials 2023;30:939-948. [33] Z. Long X. Liu W. Yang K.-M. Chang E. Barbero Thermodynamic assessment of liquid composition change during solidification and its effect on freckle formation in superalloys Mater Sci Eng, A 386 2004 254 261 Long Z, Liu X, Yang W, Chang K-M, Barbero E. Thermodynamic assessment of liquid composition change during solidification and its effect on freckle formation in superalloys. Materials Science and Engineering: A 2004;386:254-261. [34] J. Valdés P. King X. Liu On the formulation of a freckling criterion for Ni-based superalloy vacuum arc remelting ingots Metall Mater Trans 41 2010 2408 2416 Valdes J, King P, Liu X. On the formulation of a freckling criterion for Ni-based superalloy vacuum arc remelting ingots. Metallurgical and Materials Transactions A 2010;41:2408-2416. [35] N. Ren J. Li C. Panwisawas M. Xia H. Dong J. Li Insight into the sensitivities of freckles in the directional solidification of single-crystal turbine blades J Manuf Process 77 2022 219 228 Ren N, Li J, Panwisawas C, Xia M, Dong H, Li J. Insight into the sensitivities of freckles in the directional solidification of single-crystal turbine blades. Journal of Manufacturing Processes 2022;77:219-228. [36] B. Zhang S. Huang W. Zhang Q. Tian S. Chen Recent development of nickel-based disc alloys andCorresponding cast-wrought processing techniques Acta Metall Sin 55 2019 1095 1114 Zhang B, Huang S, Zhang W, Tian Q, Chen S. Recent Development of Nickel-Based Disc Alloys andCorresponding Cast-Wrought Processing Techniques. Acta Metall Sin, 2019;55:1095-1114. [37] S. Tin T.M. Pollock Predicting freckle formation in single crystal Ni-base superalloys J Mater Sci 39 2004 7199 7205 Tin S, Pollock TM. Predicting freckle formation in single crystal Ni-base superalloys. Journal of Materials Science 2004; 39:7199-7205. [38] C. Beckermann J.P. Gu W.J. Boettinger Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings Metall Mater Trans 31 2000 2545 2557 Beckermann C, Gu JP, Boettinger WJ. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings. Metallurgical and materials transactions A 2000;31:2545-2557. [39] P. Auburtin T. Wang S.L. Cockcroft A. Mitchell Freckle formation and freckle criterion in superalloy castings Metall Mater Trans B 31 2000 801 811 Auburtin P, Wang T, Cockcroft SL, Mitchell A. Freckle formation and freckle criterion in superalloy castings. Metallurgical and materials transactions B 2000;31:801-811. [40] N. Ren J. Li C. Panwisawas M. Xia H. Dong J. Li Insight into the sensitivities of freckles in the directional solidification of single-crystal turbine blades J Manuf Process 77 2022 219 228 Ren N, Li J, Panwisawas C, Xia M, Dong H, Li J. Insight into the sensitivities of freckles in the directional solidification of single-crystal turbine blades. Journal of Manufacturing Processes 2022;77:219-228. [41] X. Wang R.M. Ward M.H. Jacobs M.D. Barratt Effect of variation in process parameters on the formation of freckle in inconel 718 by vacuum arc remelting Metall Mater Trans 39 2008 2981 2989 Wang X, Ward RM, Jacobs MH, Barratt MD. Effect of variation in process parameters on the formation of freckle in inconel 718 by vacuum arc remelting. Metallurgical and Materials Transactions A 2008;39:2981-2989.