Numerical robustness of single-layer method with Fourier basis for multiple obstacle acoustic scattering in homogeneous media
Tài liệu tham khảo
Givoli, 2013
Nataf, 2013
Sayas, 2009, The validity of Johnson–Nédélec’s BEM–FEM coupling on polygonal interfaces, SIAM J. Numer. Anal., 47, 3451, 10.1137/08072334X
Kirsch, 1994, An analysis of the coupling of finite-element and Nyström methods in acoustic scattering, IMA J. Numer. Anal., 14, 523, 10.1093/imanum/14.4.523
Ganesh, 2016, High-order FEM–BEM computer models for wave propagation in unbounded and heterogeneous media: Application to time-harmonic acoustic horn problem, J. Comput. Appl. Math., 307, 183, 10.1016/j.cam.2016.02.024
Antoine, 2012, Wide frequency band numerical approaches for multiple scattering problems by disks, J. Algorithms Comput. Technol., 6, 241, 10.1260/1748-3018.6.2.241
Thierry, 2011
Ganesh, 2011, An efficient algorithm for simulating scattering by a large number of two dimensional particles, ANZIAM J., 52, 139, 10.21914/anziamj.v52i0.3954
Amirkulova, 2015, Acoustic multiple scattering using recursive algorithms, J. Comput. Phys., 299, 787, 10.1016/j.jcp.2015.07.031
Falletta, 2014, Exact nonreflecting boundary conditions for exterior wave equation problems, Publ. de l’Institut Mathématique, 96, 103
Ganesh, 2004, A high-order algorithm for obstacle scattering in three dimensions, J. Comput. Phys., 198, 211, 10.1016/j.jcp.2004.01.007
Bendali, 2016, Approximation by multipoles of the multiple acoustic scattering by small obstacles in three dimensions and application to the foldy theory of isotropic scattering, Arch. Ration. Mech. Anal., 219, 10.1007/s00205-015-0915-5
Challa, 2014, On the justification of the Foldy–Lax approximation for the acoustic scattering by small rigid bodies of arbitrary shapes, Multiscale Model. Simul., 12, 55, 10.1137/130919313
Martin, 2006
P. Martin, Corrections and additions.
Kress, 1991, Boundary integral equations in time-harmonic acoustic scattering, Math. Comput. Modelling, 15, 229, 10.1016/0895-7177(91)90068-I
Antoine, 2013, Spectral and condition number estimates of the acoustic single-layer operator for low-frequency multiple scattering in dilute media, Comput. Methods Appl. Mech. Engrg., 265, 242, 10.1016/j.cma.2012.04.017
Thierry, 2013, Spectral and condition number estimates of the acoustic single-layer operator for low-frequency multiple scattering in dense media, J. Comput. Appl. Math., 239, 380, 10.1016/j.cam.2012.09.005
Thierry, 2015, μ-diff: An open-source Matlab toolbox for computing multiple scattering problems by disks, Comput. Phys. Comm., 192, 348, 10.1016/j.cpc.2015.03.013
V. Frayssé, L. Giraud, S. Gratton, J. Langou, A set of GMRES routines for real and complex arithmetics on high performance computers, Tech. rep., CERFACS, tR/PA/03/3 (1997).
X. Antoine, K. Ramdani, B. Thierry, Étude numérique de la résolution par équations intégrales de la diffraction multiple par des disques, in: 10ème Congrès Français d’Acoustique, 2010.
Cakoni, 2014
Hettlich, 1995, Fréchet derivatives in inverse obstacle scattering, Inverse Probl., 11, 371, 10.1088/0266-5611/11/2/007
Colton, 2013
Kress, 2014
Abramowitz, 1964
Sauter, 2011
Barucq, 2016
Ganesh, 2008, Simulation of acoustic scattering by multiple obstacles in three dimensions, ANZIAM J., 50, 31, 10.21914/anziamj.v50i0.1451
Press, 2007
Hairer, 2005