Numerical robustness of single-layer method with Fourier basis for multiple obstacle acoustic scattering in homogeneous media

Wave Motion - Tập 77 - Trang 40-63 - 2018
Hélène Barucq, Juliette Chabassier, Ha Pham, Sébastien Tordeux

Tài liệu tham khảo

Givoli, 2013 Nataf, 2013 Sayas, 2009, The validity of Johnson–Nédélec’s BEM–FEM coupling on polygonal interfaces, SIAM J. Numer. Anal., 47, 3451, 10.1137/08072334X Kirsch, 1994, An analysis of the coupling of finite-element and Nyström methods in acoustic scattering, IMA J. Numer. Anal., 14, 523, 10.1093/imanum/14.4.523 Ganesh, 2016, High-order FEM–BEM computer models for wave propagation in unbounded and heterogeneous media: Application to time-harmonic acoustic horn problem, J. Comput. Appl. Math., 307, 183, 10.1016/j.cam.2016.02.024 Antoine, 2012, Wide frequency band numerical approaches for multiple scattering problems by disks, J. Algorithms Comput. Technol., 6, 241, 10.1260/1748-3018.6.2.241 Thierry, 2011 Ganesh, 2011, An efficient algorithm for simulating scattering by a large number of two dimensional particles, ANZIAM J., 52, 139, 10.21914/anziamj.v52i0.3954 Amirkulova, 2015, Acoustic multiple scattering using recursive algorithms, J. Comput. Phys., 299, 787, 10.1016/j.jcp.2015.07.031 Falletta, 2014, Exact nonreflecting boundary conditions for exterior wave equation problems, Publ. de l’Institut Mathématique, 96, 103 Ganesh, 2004, A high-order algorithm for obstacle scattering in three dimensions, J. Comput. Phys., 198, 211, 10.1016/j.jcp.2004.01.007 Bendali, 2016, Approximation by multipoles of the multiple acoustic scattering by small obstacles in three dimensions and application to the foldy theory of isotropic scattering, Arch. Ration. Mech. Anal., 219, 10.1007/s00205-015-0915-5 Challa, 2014, On the justification of the Foldy–Lax approximation for the acoustic scattering by small rigid bodies of arbitrary shapes, Multiscale Model. Simul., 12, 55, 10.1137/130919313 Martin, 2006 P. Martin, Corrections and additions. Kress, 1991, Boundary integral equations in time-harmonic acoustic scattering, Math. Comput. Modelling, 15, 229, 10.1016/0895-7177(91)90068-I Antoine, 2013, Spectral and condition number estimates of the acoustic single-layer operator for low-frequency multiple scattering in dilute media, Comput. Methods Appl. Mech. Engrg., 265, 242, 10.1016/j.cma.2012.04.017 Thierry, 2013, Spectral and condition number estimates of the acoustic single-layer operator for low-frequency multiple scattering in dense media, J. Comput. Appl. Math., 239, 380, 10.1016/j.cam.2012.09.005 Thierry, 2015, μ-diff: An open-source Matlab toolbox for computing multiple scattering problems by disks, Comput. Phys. Comm., 192, 348, 10.1016/j.cpc.2015.03.013 V. Frayssé, L. Giraud, S. Gratton, J. Langou, A set of GMRES routines for real and complex arithmetics on high performance computers, Tech. rep., CERFACS, tR/PA/03/3 (1997). X. Antoine, K. Ramdani, B. Thierry, Étude numérique de la résolution par équations intégrales de la diffraction multiple par des disques, in: 10ème Congrès Français d’Acoustique, 2010. Cakoni, 2014 Hettlich, 1995, Fréchet derivatives in inverse obstacle scattering, Inverse Probl., 11, 371, 10.1088/0266-5611/11/2/007 Colton, 2013 Kress, 2014 Abramowitz, 1964 Sauter, 2011 Barucq, 2016 Ganesh, 2008, Simulation of acoustic scattering by multiple obstacles in three dimensions, ANZIAM J., 50, 31, 10.21914/anziamj.v50i0.1451 Press, 2007 Hairer, 2005