Numerical realization of helical vortices: application to vortex instability

Theoretical and Computational Fluid Dynamics - Tập 34 - Trang 1-20 - 2019
Mattias Brynjell-Rahkola1, Dan S. Henningson1
1Linné FLOW Centre and Swedish e-Science Research Centre (SeRC), Department of Mechanics, KTH Royal Institute of Technology, Stockholm, Sweden

Tóm tắt

The need to numerically represent a free vortex system arises frequently in fundamental and applied research. Many possible techniques for realizing this vortex system exist but most tend to prioritize accuracy either inside or outside of the vortex core, which therefore makes them unsuitable for a stability analysis considering the entire flow field. In this article, a simple method is presented that is shown to yield an accurate representation of the flow inside and outside of the vortex core. The method is readily implemented in any incompressible Navier–Stokes solver using primitive variables and Cartesian coordinates. It can potentially be used to model a wide range of vortices but is here applied to the case of two helices, which is of renewed interest due to its relevance for wind turbines and helicopters. Three-dimensional stability analysis is performed in both a rotating and a translating frame of reference, which yield eigenvalue spectra that feature both mutual inductance and elliptic instabilities. Comparison of these spectra with available theoretical predictions is used to validate the proposed baseflow model, and new insights into the elliptic instability of curved Batchelor vortices are presented. Furthermore, it is shown that the instabilities in the rotating and the translating reference frames have the same structure and growth rate, but different frequency. A relation between these frequencies is provided.

Tài liệu tham khảo

Levy, H., Forsdyke, A.G.: The steady motion and stability of a helical vortex. Proc. R. Soc. Lond. A 120(786), 670 (1928). http://www.jstor.org/stable/95006 Kida, S.: A vortex filament moving without change of form. J. Fluid Mech. 112, 397 (1981). https://doi.org/10.1017/S0022112081000475 Batchelor, G.K.: An Introduction to Fluid Dynamics. Cambridge University Press, Cambridge (1967) Crow, S.C.: Stability theory for a pair of trailing vortices. AIAA J. 8(12), 2172 (1970). https://doi.org/10.2514/3.6083 Rosenhead, L.: The spread of vorticity in the wake behind a cylinder. Proc. R. Soc. Lond. A 127(806), 590 (1930). https://doi.org/10.1098/rspa.1930.0078 Moore, D.W.: Finite amplitude waves on aircraft trailing vortices. Aeronaut. Q. 23(4), 307 (1972). https://doi.org/10.1017/S000192590000620X Saffman, P.G.: The velocity of viscous vortex rings. Stud. Appl. Math. 49(4), 371 (1970). https://doi.org/10.1002/sapm1970494371 Widnall, S.E., Bliss, D., Zalay, A.: Theoretical and experimental study of the stability of a vortex pair, pp. 339–354. Springer, Boston (1971). https://doi.org/10.1007/978-1-4684-8346-8_19 Hardin, J.C.: The velocity field induced by a helical vortex filament. Phys. Fluids 25(11), 1949 (1982). https://doi.org/10.1063/1.863684 Okulov, V.L.: On the stability of multiple helical vortices. J. Fluid Mech. 521, 319 (2004). https://doi.org/10.1017/S0022112004001934 Callegari, A.J., Ting, L.: Motion of a curved vortex filament with decaying vortical core and axial velocity. SIAM J. Appl. Math. 35(1), 148 (1978). https://doi.org/10.1137/0135013 Blanco-Rodríguez, F.J., Le Dizès, S., Selçuk, C., Delbende, I., Rossi, M.: Internal structure of vortex rings and helical vortices. J. Fluid Mech. 785, 219 (2015). https://doi.org/10.1017/jfm.2015.631 Segalini, A., Alfredsson, P.H.: A simplified vortex model of propeller and wind-turbine wakes. J. Fluid Mech. 725, 91 (2013). https://doi.org/10.1017/jfm.2013.182 Sørensen, J.N., Shen, W.Z.: Numerical modeling of wind turbine wakes. J. Fluids Eng. 124(2), 393 (2002). https://doi.org/10.1115/1.1471361 Kleusberg, E., Schlatter, P., Henningson, D.S.: Parametric study of the actuator line method in high-order codes. Technical report, Department of Mechanics, KTH Royal Institute of Technology (2017) Selçuk, S., Delbende, I., Rossi, M.: Helical vortices: quasiequilibrium states and their time evolution. Phys. Rev. Fluids 2, 084701 (2017). https://doi.org/10.1103/PhysRevFluids.2.084701 Quaranta, H.U., Brynjell-Rahkola, M., Leweke, T., Henningson, D.S.: Local and global pairing instabilities of two interlaced helical vortices. J. Fluid Mech. 863, 927 (2019). https://doi.org/10.1017/jfm.2018.904 Saffman, P.G.: Vortex Dynamics. Cambridge Monographs on Mechanics. Cambridge University Press, Cambridge (1992) Batchelor, G.K.: Axial flow in trailing line vortices. J. Fluid Mech. 20(4), 645 (1964). https://doi.org/10.1017/S0022112064001446 Quaranta, H.U., Bolnot, H., Leweke, T.: Long-wave instability of a helical vortex. J. Fluid Mech. 780, 687 (2015). https://doi.org/10.1017/jfm.2015.479 Ivanell, S., Mikkelsen, R., Sørensen, J.N., Henningson, D.: Stability analysis of the tip vortices of a wind turbine. Wind Energy 13(8), 705 (2010). https://doi.org/10.1002/we.391 Sarmast, S., Dadfar, R., Mikkelsen, R.F., Schlatter, P., Ivanell, S., Sørensen, J.N., Henningson, D.S.: Mutual inductance instability of the tip vortices behind a wind turbine. J. Fluid Mech. 755, 705 (2014). https://doi.org/10.1017/jfm.2014.326 Jeong, J., Hussain, F.: On the identification of a vortex. J. Fluid Mech. 285, 69 (1995). https://doi.org/10.1017/S0022112095000462 Fischer, P.F., Lottes, J.W., Kerkemeier, S.G.: Nek5000 web page (2008). https://nek5000.mcs.anl.gov Maday, Y., Patera, A.T.: Spectral element methods for the Navier–Stokes equations. In: Noor, A.K. (ed.) State of the Art Surveys in Computational Mechanics, pp. 71–143. ASME, New York (1989) Fischer, P.F., Lottes, J.W.: Hybrid Schwarz–Multigrid Methods for the Spectral Element Method: Extensions to Navier–Stokes, pp. 35–49. Springer, Berlin (2005). https://doi.org/10.1007/3-540-26825-1_3 Saad, Y., Schultz, M.H.: GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7(3), 856 (1986). https://doi.org/10.1137/0907058 Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in FORTRAN 77: Volume 1, Volume 1 of Fortran Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992) Okulov, V.L., Sørensen, J.N.: Maximum efficiency of wind turbine rotors using Joukowsky and Betz approaches. J. Fluid Mech. 649, 497 (2010). https://doi.org/10.1017/S0022112010000509 Malm, J., Schlatter, P., Fischer, P.F., Henningson, D.S.: Stabilization of the spectral element method in convection dominated flows by recovery of skew-symmetry. J. Sci. Comput. 57(2), 254 (2013). https://doi.org/10.1007/s10915-013-9704-1 Negi, P., Schlatter, P., Henningson, D.S.: A re-examination of filter-based stabilization for spectral element methods. Techical report, Department of Mechanics, KTH Royal Institute of Technology (2017) Sipp, D., Jacquin, L., Cossu, C.: Self-adaptation and viscous selection in concentrated two-dimensional vortex dipoles. Phys. Fluids 12(2), 245 (2000). https://doi.org/10.1063/1.870325 Le Dizès, S., Verga, A.: Viscous interactions of two co-rotating vortices before merging. J. Fluid Mech. 467, 389 (2002). https://doi.org/10.1017/S0022112002001532 Leweke, T., Le Dizès, S., Williamson, C.H.K.: Dynamics and instabilities of vortex pairs. Annu. Rev. Fluid Mech. 48(1), 507 (2016). https://doi.org/10.1146/annurev-fluid-122414-034558 Moore, D.W., Saffman, P.G.: Structure of a Line Vortex in an Imposed Strain, pp. 339–354. Springer, Boston (1971). https://doi.org/10.1007/978-1-4684-8346-8_20 Widnall, S.E.: The stability of a helical vortex filament. J. Fluid Mech. 54, 641 (1972). https://doi.org/10.1017/S0022112072000928 Gupta, B.P., Loewy, R.G.: Theoretical analysis of the aerodynamic stability of multiple, interdigitated helical vortices. AIAA J. 12(10), 1381 (1974). https://doi.org/10.2514/3.49493 Hill, D.C.: Adjoint systems and their role in the receptivity problem for boundary layers. J. Fluid Mech. 292, 183 (1995). https://doi.org/10.1017/S0022112095001480 Bagheri, S., Åkervik, E., Brandt, L., Henningson, D.S.: Matrix-free methods for the stability and control of boundary layers. AIAA J. 47(5), 1057 (2009). https://doi.org/10.2514/1.41365 Maschhoff, K.J., Sorensen, D.C.: P\_ARPACK: an efficient portable large scale eigenvalue package for distributed memory parallel architectures. In: Waśniewski, J., Dongarra, J., Madsen, K., Olesen, D. (eds.) Applied Parallel Computing Industrial Computation and Optimization, pp. 478–486. Springer, Berlin (1996) Lehoucq, R.B., Sorensen, D.C., Yang, C.: ARPACK User’s Guide: Solution of Large Scale Eigenvalue Problems by Implicitly Restarted Arnoldi Methods. Society for Industrial and Applied Mathematics, Philadelphia (1998). https://doi.org/10.1137/1.9780898719628 Lacaze, L., Ryan, K., Le Dizès, S.: Elliptic instability in a strained Batchelor vortex. J. Fluid Mech. 577, 341 (2007). https://doi.org/10.1017/S0022112007004879 Roy, C., Schaeffer, N., Le Dizès, S., Thompson, M.: Stability of a pair of co-rotating vortices with axial flow. Phys. Fluids 20(9), 094101 (2008). https://doi.org/10.1063/1.2967935 Selçuk, S.C., Delbende, I., Rossi, M.: Helical vortices: linear stability analysis and nonlinear dynamics. Fluid Dyn. Res. 50(1), 011411 (2017). https://doi.org/10.1088/1873-7005/aa73e3 Hattori, Y., Blanco-Rodríguez, F.J., Le Dizès, S.: Numerical stability analysis of a vortex ring with swirl. J. Fluid Mech. 878, 5 (2019). https://doi.org/10.1017/jfm.2019.621 Robinson, A.C., Saffman, P.G.: Three-dimensional stability of vortex arrays. J. Fluid Mech. 125, 411 (1982). https://doi.org/10.1017/S0022112082003413 Blanco-Rodríguez, F.J., Le Dizès, S.: Curvature instability of a curved Batchelor vortex. J. Fluid Mech. 814, 397 (2017). https://doi.org/10.1017/jfm.2017.34 Moore, D.W., Saffman, P.G.: The instability of a straight vortex filament in a strain field. Proc. R. Soc. Lond. A 346(1646), 413 (1975). https://doi.org/10.1098/rspa.1975.0183 Eloy, C., Le Dizès, S.: Stability of the Rankine vortex in a multipolar strain field. Phys. Fluids 13(3), 660 (2001). https://doi.org/10.1063/1.1345716 Sipp, D., Jacquin, L.: Widnall instabilities in vortex pairs. Phys. Fluids 15(7), 1861 (2003). https://doi.org/10.1063/1.1575752 Blanco-Rodríguez, F.J., Le Dizès, S.: Elliptic instability of a curved Batchelor vortex. J. Fluid Mech. 804, 224 (2016). https://doi.org/10.1017/jfm.2016.533 Lacaze, L., Birbaud, A.L., Le Dizès, S.: Elliptic instability in a Rankine vortex with axial flow. Phys. Fluids 17(1), 017101 (2005). https://doi.org/10.1063/1.1814987 Kleusberg, E., Schlatter, P., Henningson, D.S.: Wind Energy (2019, accepted for publication) Brocklehurst, A., Barakos, G.: A review of helicopter rotor blade tip shapes. Prog. Aerosp. Sci. 56, 35 (2013). https://doi.org/10.1016/j.paerosci.2012.06.003