Numerical radius inequalities of $$2\times 2$$ operator matrices

Advances in Operator Theory - Tập 8 Số 1 - 2023
Pintu Bhunia1, Kallol Paul1
1Department of Mathematics, Jadavpur University, Kolkata, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Abu-Omar, A., Kittaneh, F.: Numerical radius inequalities for $$n \times n$$ operator matrices. Linear Algebra Appl. 468, 18–26 (2015)

Bag, S., Bhunia, P., Paul, K.: Bounds of numerical radius of bounded linear operator using $$t$$-Aluthge transform. Math. Inequal. Appl. 23(3), 991–1004 (2020)

Bani-Domi, W.: Generalized numerical radius inequalities for $$2 \times 2$$ operator operator matrices. Ital. J. Pure Appl. Math. 39, 31–38 (2018)

Bani-Domi, W., Kittaneh, F.: Refined and generalized numerical radius inequalities for $$2 \times 2$$ operator matrices. Linear Algebra Appl. 624, 364–386 (2021)

Bhatia, R.: Matrix Analysis. Springer, New York (1997)

Bhunia, P., Paul, K.: New upper bounds for the numerical radius of Hilbert space operators. Bull. Sci. Math. 167, 11 (2021). (Paper no. 102959)

Bhunia, P., Paul, K.: Refinements of norm and numerical radius inequalities. Rocky Mountain J. Math. 51(6), 1953–1965 (2021)

Bhunia, P., Paul, K.: Furtherance of Numerical radius inequalities of Hilbert space operators. Arch. Math. (Basel) 117(5), 537–546 (2021)

Bhunia, P., Paul, K.: Some improvement of numerical radius inequalities of operators and operator matrices. Linear Multilinear Algebra 70(10), 1995–2013 (2022)

Bhunia, P., Bag, S., Paul, K.: Numerical radius inequalities and its applications in estimation of zeros of polynomials. Linear Algebra Appl. 573, 166–177 (2019)

Bhunia, P., Bag, S., Paul, K.: Bounds for zeros of a polynomial using numerical radius of Hilbert space operators. Ann. Funct. Anal. 12(2), 21 (2021)

Bhunia, P., Bag, S., Paul, K.: Numerical radius inequalities of operator matrices with applications. Linear Multilinear Algebra 69(9), 1635–1644 (2021)

Bhunia, P., Dragomir, S.S., Moslehian, M.S., Paul, K.: Lectures on numerical radius inequalities. In Infosys Science Foundation Series, Infosys Science Foundation Series in Mathematical Sciences, XII+209 pp. Springer Cham (2022). https://doi.org/10.1007/978-3-031-13670-2

Bhunia, P., Paul, K., Nayak, R.K.: Sharp inequalities for the numerical radius of Hilbert space operators and operator matrices. Math. Inequal. Appl. 24(1), 167–183 (2021)

Buzano, M.L.: Generalizzazione della diseguaglianza di Cauchy–Schwarz. Rend. Sem. Mat. Univ. Politech. Torino 31, 405–409 (1974). (in Italian)

Dragomir, S.S.: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 5, 269–278 (2009)

El-Haddad, M., Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. II. Stud. Math. 182, 133–140 (2007)

Gustafson, K.E., Rao, D.K.M.: Numerical Range. Springer, New York (1997)

Halmos, P.R.: A Hilbert Space Problems Book. Springer Verlag, New York (1982)

Hirzallah, O., Kittaneh, F., Shebrawi, K.: Numerical radius inequalities for certain $$2\times 2$$ operator matrices. Integr. Equ. Oper. Theory 71, 129–147 (2011)

Kittaneh, F.: Norm inequalities for sums of positive operators. J. Operator Theory 48, 95–103 (2002)

Kittaneh, F.: Norm inequalities for certain operator sums. J. Funct. Anal. 143, 337–348 (1997)

Simon, B.: Trace Ideals and Their Applications. Cambridge University Press, Cambridge (1979)

Wu, P.Y., Gau, H.-L.: Numerical ranges of Hilbert space operators. In: Encyclopedia of Mathematics and its Applications, vol. 179, xviii+483 pp. Cambridge University Press, Cambridge (2021). ISBN: 978-1-108-47906-6 47-02