Numerical multilinear algebra and its applications
Tóm tắt
Từ khóa
Tài liệu tham khảo
Alon N, de la Vega W F, Kannan R, et al. Random sampling and approximation of max-csps. J Comput System Sci, 2003, 67: 212–243
Bienvenu G, Kopp L. Optimality of high-resolution array processing using the eigen-system approach. IEEE Trans ASSP, 1983, 31: 1235–1248
Cao X R, Liu R W. General approach to blind source separation. IEEE Trans Signal Processing, 1996, 44: 562–570
Cardoso J F. Super-symmetric decomposition of the forth-order cumulant tensor. Blind identification of more sources than sensors. In: Proceedings of the IEEE International Conference on Acoust, Speech, and Signal Processing (ICASSP’91), Toronto, Canada, 1991
Cardoso J F. High-order contrasts for independent component analysis. Neural Computation, 1999, 11: 157–192
Caroll J D, Chang J J. Analysis of individual differences in multidimensional scaling via n-way generalization of Eckart-Young decomposition. Psychometrika, 1970, 35: 283–319
Comon P. Tensor diagonalization, a useful tool in signal processing. In: Blanke M, Soderstrom T, eds. IFAC-SYSID, 10th IFAC Symposium on System Identification (Copenhagen, Denmark, July 4–6, 1994. Invited Session). Vol. 1, 77–82
Comon P. Independent component analysis, a new concept? Signal Processing, Special Issue on Higher-Order Statistics, 1994, 36: 287–314
Comon P, Mourrain B. Decomposition of quantics in sums of powers of linear forms. Signal Processing, Special Issue on Higher-Order Statistics, 1996, 53: 96–107
Comon P. Block methods for channel identification and source separation. In: IEEE Symposium on Adaptive Systems for Signal Process, Commun Control (Lake Louise, Alberta, Canada, Oct 1–4, 2000. Invited Plenary). 87–92
Comon P, Chevalier P. Blind source separation: Models, concepts, algorithms, and performance. In: Haykin S, ed. Unsupervised Adaptive Filtering, Vol 1. New York: John Wiley, 2000
Comon P. Tensor decompositions: State of the art and applications. In: McWhirter J G, Proundler I K, eds. Mathematics in Signal Processing, V. Oxford: Oxford University Press, 2002
Comon P. Canonical tensor decompositions. In: ARCC Workshop on Tensor Decompositions, Americal Institute of Mathematics (AIM), Palo Alto, California, USA, July 19–23, 2004
Comon P, Golub G, Lim L H, et al. Symmetric tensors and symmetric tensor rank. SIAM J Matrix and Applications, 2007 (in press)
Coppi R, Bolasco S, eds. Multiway Data Analysis. Amsterdam: Elsevier, 1989
de la Vega W F, Kannan R, Karpinski M, et al. Tensor Decomposition and Approximation Algorithms for Constraint Satisfaction Problems. New York: ACM Press, 2005, 747–754
Defant A, Floret K. Tensor Norms and Operator Ideals. North-Holland Mathematics Studies, No 176. Amsterdam: North-Holland, 1993
Ferrier C. Hilbert’s 17th problem and best dual bounds in quadatic minimization. Cybernet Systems Anal, 1998, 34: 696–709
Golub G, Van Loan C F. Matrix Computations. 3rd ed. Baltimore: Johns Hopkins University Press, 1996
Golub G, Kolda T G, Nagy J, et al. Workshop on Tensor Decompositions, American Institute of Mathematics, Palo Alto, California, 19–23 July, 2004. http://www.aimath.org/WWN/tensordecomp
Golub G, Mahoney M, Drinears P, et al. Workshop for Modern Massive Data Sets, 21–24 June, 2006. http://www.stanford.edu/group/mmds
Golub G, Mahoney M, Drinears P, et al. Bridge the gap between numerical linear algebra, theoretical computer science, and data applications. SIAM News, 2006, 39(8). http://www.siam.org/pdf/news/1019.pdf
Greub W H. Multilinear Algebra. Berlin: Springer-Verlag, 1967
Harshman R A. Determination and proof of minimum uniqueness conditions of PARAFAC. UCLA Working Papers in Phonetics, 1972, 22: 111–117
He X, Sun W. Introduction to Generalized Inverses of Matrices. Nanjing: Jiangsu Sci & Tech Publishing House, 1990 (in Chinese)
Hitchcock F L. The expression of a tensor or a polyadic as a sum of products. J Math Physics, 1927, 6: 164–189
Hitchcock F L. Multiple invariants and generalized rank of a p-way matrix or tensor. J Math Physics, 1927, 7: 39–79
Kilmer M E, Martin C D M. Decomposing a tensor. SIAM News, 2004, 37. http://www.siam.org/siamnews/11-04/tensor.pdf
Kofidis E, Regalia P A. Tensor approximation and signal processing applications. In: Olshevsky V, ed. Structured Matrices in Mathematics, Computer Science and Engineering, Vol. I. Contemporary Mathematics, 280. Providence: AMS, 2001
Kofidis E, Regalia P A. On the best rank-1 approximation of higher-order supersymmetric tensors. SIAM J Matrix Anal Appl, 2002, 23: 863–884
Kroonenberg P M. Singular value decompositions of interactions in three-way contigency tables. In: Coppi R, Bolasco S, eds. Multiway Data Analysis. North Holland: Elsevier Science Publishers, 1989: 169–184
Kruskal J B. Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra and Applications, 1977, 18: 95–138
Lasserre J B. Global optimization with polynomials and the problem of moments. SIAM J Optimization, 2001, 11: 796–817
Lasserre J B. Semidefinite programming vs. LP relaxations for polynomial programming. Mathematics of Operations Research, 2002, 27: 347–360
Lasserre J B. Polynomial programming: LP-relaxations also converge. SIAM J Optimization, 2004, 15: 383–393
Lasserre J B. A sum of squares approximation of nonnegative polynomials. SIAM J Optimization, 2006, 16: 751–765
De Lathauwer L, Comon P, De Moor B, et al. Higher-order power method—application in independent component analysis. In: Proceedings of the International Symposium on Nonlinear Theory and Its Applications (NOLTA’95), Las Vegas, NV. 1995, 91–96
De Lathauwer L, De Moor B. From matrix to tensor: Multilinear algebra and signal processing. In: Mathematics in Signal Processing, IMA Conference Series (Warwick, Dec 17–19, 1996), Oxford: Oxford University Press, 1996
De Lathauwer L, De Moor B, Vandewalle J. A multilinear singular value decomposition. SIAM J Matrix Anal Appl, 2000, 21: 1253–1278
De Lathauwer L, De Moor B, Vandewalle J. On the rank-1 and rank-(R 1, R 2, ..., R N) approximation of higher-order tensors. SIAM J Matrix Anal Appl, 2000, 21: 1324–1342
De Lathauwer L. First-order perturbation analysis of the best rank-(R 1, R 2, R 3) approximation in multilinear algebra. J Chemometrics, 2004, 18: 2–11
De Lathauwer L, De Moor B, Vandewalle J. Computation of the canonical decomposition by means of a simultaneous generalized Schur decomposition. SIAM J Matrix Anal Appl, 2004/05, 26: 295–327
De Lathauwer L, Comon P. Workshop on Tensor Decompositions and Applications, Luminy, Marseille, France, August 29–September 2, 2005. http://www.etis.ensea.fr/wtda
Leon S. Workshop Report: Algorithms for Modern Massive Data Sets (MMDS). NA Digest, 2006, Vol 6, No 27
Leurgans S E, Ross R T, Abel R B. A decomposition for three-way arrays. SIAM J Matrix Anal Appl, 1993, 14: 1064–1083
Li C, Sun W. A nonsmooth Newton-type method for nonlinear semidefinite programs. Technical Report, School of Mathematics and Computer Science, Nanjing Normal University, March, 2007
Li C, Sun W. Filter-Successive Linearization Methods for Nonlinear Semidefinite Programs. Technical Report, School of Mathematics and Computer Science, Nanjing Normal University, December, 2006
Lim L H. Singular values and eigenvalues of tensors: A variational approach. In: Proceedings of the 1st IEEE International Workshop on Computational Advances of multi-sensor Adaptive Processing (CAMSAP), December 13–15, 2005. 2005, 129–132
Liu X, Sidiropoulos N D. Cramer-Rao lower bounds for low-rank decomposition of multidimensional arrays. IEEE Trans on Signal Processing, 2001, 49: 2074–2086
Luo Z Q, Lu J. On blind source separation using mutual information criterion. Mathematical Programming, Ser B, 2003, 97: 587–603
McCullagh P. Tensor Methods in Statistics. Monographs in Statistics and Applied Probability. London: Chapman and Hall, 1987
Moré J J. The Levenberg-Marquadt algorithm: implementation and theory. In: Watson G A, ed. Numerical Analysis. Lecture Notes in Math, Vol 630, Berlin: Springer-Verlag, 1977, 105–116
Nesterov Y. Squared functional systems and optimization problems. In: Frenk H, Roos K, Terlaky T, et al, eds. High Performance Optimization, Dordrecht: Kluwer, 2000, 405–440
Ni G, Qi L, Wang F, et al. The degree of the E-characteristic polynomial of an even order tensor. Journal of Mathematical Analysis and Applications, 2007, 329: 1218–1229
Ni G Y, Wang Y J. On the best rank-1 approximation to higher-order symmetric tensors. Mathematical and Computer Modeling, 2007, 46: 1345–1352
Paatero P. A weighted non-negative least squares algorithm for three-way “PARAFAC” factor analysis. Chemometrics Intell Lab Syst, 1997, 38: 223–242
Parrilo P A. Semidefinite programming relaxation for semialgebraic problems. Mathematical Programming, 2003, 96: 293–320
Qi L. Eigenvalues of a real supersymmetric tensor. Journal of Symbolic Computation, 2005, 40: 1302–1324
Qi L. Rank and eigenvalues of a supersymmetric tensor, a multivariate homogeneous polynomial and an algebraic surface defined by them. Journal of Symbolic Computation, 2006, 41: 1309–1327
Qi L. Eigenvalues and invariants of tensors. Journal of Mathematical Analysis and Applications, 2007, 325: 1363–1377
Qi L, Wang F, Wang Y. Z-eigenvalue methods for a global polynomial optimization problem. Mathematical Programming, 2008 (in press)
Schnabel R B. Conic methods for unconstrained optimization and tensor methods for nonlinear equations. In: Bachem A, Grotschel M, Korte B, eds. Mathematical Programming, The State of the Art. Berlin: Springer-Verlag, 1983, 417–438
Schnabel R B, Frank P D. Tensor methods for nonlinear equations. SIAM J Numerical Analysis, 1984, 21: 815–843
Schnabel R B, Chow T T. Tensor methods for unconstrained optimization using second derivatives. SIAM J Optimization, 1991, 1: 293–315
Schott J R. Matrix Analysis for Statistics. 2nd ed. New York: John Wiley & Sons, Inc, 2005
Schweighofer M. Optimization of polynomials on compact semialgebraic sets. SIAM J Optimization, 2005, 15: 805–825
Sidiropoulos N, Giannakis G, Bro R. Blind PARAFAC receivers for DS-CDMA systems. IEEE Trans Signal Process, 2000, 48: 810–823
Sidiropoulos N, Bro R. On the uniqueness of multilinear decomposition of N-way arrays, J Chemometrics, 2000, 14: 229–239
Sun W. Quasi-Newton methods for nonlinear matrix equations. Technical Report, School of Mathematics and Computer Science, Nanjing Normal University, 2006
Sun W, Du Q, Chen J. Computational Methods. Beijing: Science Press, 2007 (in Chinese)
Sun W, Yuan Y. Optimization Theory and Methods: Nonlinear Programming. New York: Springer, 2006
Talwar S, Vilberg M, Paulraj A. Blind estimation of multiple cochannel digital signals arriving at an antenna array: Part I, algorithms. IEEE Trans Signal Process, 1996, 44: 1184–1197
Tucker L R. Some mathematical notes on the three-mode factor analysis. Psychometrika, 1966, 31: 279–311
Van Der Veen A-J, Paulraj A. An analytical constant modulus algorithm. IEEE Trans Signal Processing, 1996, 44: 1136–1155
Vorobyov S A, Rong Y, Sidiropoulos N D, et al. Robust iterative fitting of multilinear models. IEEE Trans on Signal Processing, 2005, 53: 2678–2689
Wang Y J, Qi L Q. On the successive supersymmetric rank-1 decomposition of higher-order supersymmetric tensors. Numerical Linear Algebra with Applications, 2007, 14(6): 503–519