Numerical modelling of large deformation problems in geotechnical engineering: A state-of-the-art review

Soils and Foundations - Tập 61 - Trang 1718-1735 - 2021
Charles E. Augarde1, Seung Jae Lee2, Dimitrios Loukidis3
1Department of Engineering, Durham University, UK
2Department of Civil and Environmental Engineering, Florida International University, Miami, USA
3Department of Civil and Environmental Engineering, University of Cyprus, Nicosia, Cyprus

Tài liệu tham khảo

ABAQUS, 2011. Analysis user’s manual, Simulia, Dassault Systems. Abe, 2014, Material point method for coupled hydromechanical problems, J. Geotech. Geoenviron. Eng., 140, 1, 10.1061/(ASCE)GT.1943-5606.0001011 Abe, Y., Fujihara, S., Cao, G., Hashimoto, N., 2016. Comparison of DEM and analytical solutions for 3D deformation fields generated by slip on an embedded rectangular fault. In: Gómez, Detournay, Hart, and Nelson (Eds.). Proceedings of the 4th Itasca Symposium on Applied Numerical Modelling. Lima, Perú, Itasca International. Alfonsi, P., Grelaud, S., 2008. Determination of fracture openings in rock masses. In: Hart, Detournay, and Cundall (Eds.). Proceedings of the 1st International FLAC/DEM Symposium. 2008 Minneapolis, MN, Itasca International. Alonso, 2021, Triggering and motion of landslides, Géotechnique, 71, 3, 10.1680/jgeot.20.RL.001 Andersen, 2010, Modelling of landslides with the material-point method, Comput. Geosci., 14, 137, 10.1007/s10596-009-9137-y Andrade, 2008, Random porosity fields and their influence on the stability of granular media, Int. J. Numer. Anal. Meth. Geomech., 32, 1147, 10.1002/nag.652 Andrade, 2011, Multiscale modeling and characterization of granular matter: from grain kinematics to continuum mechanics, J. Mech. Phys. Solids, 59, 237, 10.1016/j.jmps.2010.10.009 Andrade, 2012, Granular element method for computational particle mechanics, Comput. Methods Appl. Mech. Eng., 241–244, 262, 10.1016/j.cma.2012.06.012 Atluri, 1998, A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics, Comput. Mech., 22, 117, 10.1007/s004660050346 Aubram, D., Savidis, S.A., Rackwitz, F., 2016. Theory and numerical modelling of geomechanical multi-material flow. In: Triantafyllidis, T. (Eds) Holistic Simulation of Geotechnical Installation Processes. Lecture Notes in Applied and Computational Mechanics, vol 80. Springer, Cham. Azéma, 2012, Discrete simulation of dense flows of polyhedral grains down a rough inclined plane, Phys. Rev. E, 86, 10.1103/PhysRevE.86.031303 Bakroon, 2020, Investigation of mesh improvement in multimaterial ALE formulations using geotechnical benchmark problems, Int. J. Geomech., 20, 04020114, 10.1061/(ASCE)GM.1943-5622.0001723 Bandara, 2016, Modelling landslides in unsaturated slopes subjected to rainfall infiltration using material point method, Int. J. Numer. Anal. Meth. Geomech., 40, 1358, 10.1002/nag.2499 Bandara, 2015, Coupling of soil deformation and pore fluid flow using material point method, Comput. Geotech., 63, 199, 10.1016/j.compgeo.2014.09.009 Barbosa, 1990, Discrete finite element method for multiple deformable bodies, Finite Elem. Anal. Des., 7, 145, 10.1016/0168-874X(90)90006-Z Bardenhagen, 2004, The generalized interpolation material point method, CMES- Computer Modell. Eng. Sci., 5, 477 Bathe, 1996 Belytschko, 1994, Element-free Galerkin methods, Int. J. Numer. Meth. Eng., 37, 229, 10.1002/nme.1620370205 Benson, 1989, An efficient, accurate and simple ALE method for nonlinear finite element programs, Comput. Methods Appl. Mech. Eng., 72, 305, 10.1016/0045-7825(89)90003-0 Benson, 1992, Computational methods in Lagrangian and Eulerian hydrocodes, Comput. Methods Appl. Mech. Eng., 99, 235, 10.1016/0045-7825(92)90042-I Benson, 2004, Contact in a multi-material Eulerian finite element formulation, Comput. Methods Appl. Mech. Eng., 193, 4277, 10.1016/j.cma.2003.12.061 Beuth, L., Benz, T., Vermeer, P.A., Coetzee, C.J., Bonnier, P., Berg, P., 2007. Formulation and validation of a quasi-static Material Point Method. In: Pande, G.N., Pietruszczak, S., (Eds), Numerical Models in Geomechanics, NUMOG X, pp. 189–195. Bhandari, 2016, Numerical modelling of seismic slope failure using MPM, Comput. Geotech., 75, 126, 10.1016/j.compgeo.2016.01.017 Bhusan, R., Naik, S.R., Sekar, B.H.V., 2020. Support assessment and 3D stress analysis of large underground excavations: A case study using 3DEC. In: Billaux, Hazzard, Nelson, and Schöpfer (Eds.). Proceedings of the 5th International Itasca Symposium. 2020 Vienna, Austria, Itasca International. Bing, 2019, B-spline based boundary conditions in the material point method, Comput. Struct., 212, 257, 10.1016/j.compstruc.2018.11.003 Blanc, 2012, A stabilized fractional step, Runge-Kutta Taylor SPH algorithm for coupled problems in geomechanics, Comput. Methods Appl. Mech. Eng., 221–222, 41, 10.1016/j.cma.2012.02.006 Boon, 2012, A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method, Comput. Geotech., 44, 73, 10.1016/j.compgeo.2012.03.012 Borja, 1998, Elastoplastic consolidation at finite strain part 2: finite element implementation and numerical examples, Comput. Methods Appl. Mech. Eng., 159, 103, 10.1016/S0045-7825(98)80105-9 Brinkgreve, R.B.J., Swolfs, W.M., Engin, E., Waterman, D., Chesaru, A., Bonnier, P.G., Galavi, V., 2010. PLAXIS 2D 2010 User manual, Plaxis bv. Bui, 2008, Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model, Int. J. Numer. Anal. Meth. Geomech., 32, 1537, 10.1002/nag.688 Bui, 2011, Slope stability analysis and discontinuous slope failure simulation by elasto-plastic smoothed particle hydrodynamics (SPH), Géotechnique, 61, 565, 10.1680/geot.9.P.046 Bui, 2017, A coupled fluid-solid SPH approach to modelling flow through deformable porous media, Int. J. Solids Struct., 125, 244, 10.1016/j.ijsolstr.2017.06.022 Buzzi, 2008, Caveats on the implementation of the generalized material point method, CMES- Computer Modelling in Engineering and Sciences, 31, 85 Carter, 1979, The analysis of finite elasto-plastic consolidation, Int. J. Numer. Anal. Meth. Geomech., 3, 107, 10.1002/nag.1610030202 Ceccato, 2016, Two-phase material point method applied to the study of cone penetration, Comput. Geotech., 80, 440, 10.1016/j.compgeo.2016.03.003 Ceccato, 2018, Impact forces of granular flows on rigid structures: Comparison between discontinuous (DEM) and continuous (MPM) numerical approaches, Comput. Geotech., 103, 201, 10.1016/j.compgeo.2018.07.014 Ceccato, F., Yerro, A., Martinelli, M., 2018b. Modelling soil-water interaction with the Material Point Method. Evaluation of single-point and double-point formulations. Proceedings of NUMGE 2018. Chang, 1994, An adaptive remeshing method in the simulation of resin transfer molding (RTM) process, Comput. Methods Appl. Mech. Eng., 112, 41, 10.1016/0045-7825(94)90018-3 Charlton, 2017, iGIMP: An implicit generalised interpolation material point method for large deformations, Comput. Struct., 190, 108, 10.1016/j.compstruc.2017.05.004 Chatterjee, 2012, The effects of penetration rate and strain softening on the vertical penetration resistance of seabed pipelines, Géotechnique, 62, 573, 10.1680/geot.10.P.075 Coetzee, 2005, The modelling of anchors using the material point method, Int. J. Numer. Anal. Meth. Geomech., 29, 879, 10.1002/nag.439 Conte, 2019, Post-failure stage simulation of a landslide using the material point method, Eng. Geol., 253, 149, 10.1016/j.enggeo.2019.03.006 Coombs, 2020, AMPLE: a material point learning environment, Adv. Softw. Eng., 139, 10.1016/j.advengsoft.2019.102748 Coombs, 2018, Overcoming volumetric locking in material point methods, Comput. Methods Appl. Mech. Eng., 333, 1, 10.1016/j.cma.2018.01.010 Cortis, 2018, Imposition of essential boundary conditions in the material point method, Int. J. Numer. Meth. Eng., 113, 130, 10.1002/nme.5606 Coumans, E., 2017. Bullet Physics. Available at: pybullet.org. Crisfield, M.A., 1997. Non-linear Finite Element Analysis of Solids and Structures: Advanced Topics, vol. 2, Wiley. Cundall, 1988, Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 25, 107, 10.1016/0148-9062(88)92293-0 Cundall, 1979, A discrete numerical model for granular assemblies, Géotechnique, 29, 47, 10.1680/geot.1979.29.1.47 Cundall, 1992, Numerical modelling of discontinua, Eng. Comput., 9, 101, 10.1108/eb023851 D’Addetta, 2004 DCS Computing Gmbh, 2016. LIGGGHTS Available at: https://www.cfdem.com/media/DEM/docu/Manual.html. De Boer, 2007, Mesh deformation based on radial basis function interpolation, Comput. Struct., 85, 84 DeJong, 2012, Seismic response of stone masonry spires: computational and experimental modelling, Eng. Struct., 40, 566, 10.1016/j.engstruct.2012.03.001 Delaney, G.W., Cleary, P.W., 2009. Fundamental relations between particle shape and the properties of granular packings. In: AIP Conference Proceedings. Golden, Colorado, pp. 837–840. DEM Solutions Ltd., 2019. EDEM. Available at: www.edemsimulation.com. Dey, 2016, Numerical modelling of submarine landslides with sensitive clay layers, Géotechnique, 66, 454, 10.1680/jgeot.15.P.111 Dong, 2017, Investigation of impact forces on pipeline by submarine landslide using material point method, Ocean Eng., 146, 21, 10.1016/j.oceaneng.2017.09.008 Donzé, 2009, Advances in discrete element method applied to soil, rock and concrete, Electron. J. Geotech. Eng., 81 Druckrey, 2016, 3D characterization of sand particle-to-particle contact and morphology, Comput. Geotech., 74, 26, 10.1016/j.compgeo.2015.12.014 Dubois, F., Jean, M., Renouf, M., Mozul, R., et al., 2011. LMGC90. In: 10e colloque national en calcul des structures. 2011 Giens, France. See https://hal.archives-ouvertes.fr/hal-00596875. Dutta, 2015, Finite element modelling of partially embedded pipelines in clay seabed using Coupled Eulerian-Lagrangian method, Can. Geotech. J., 52, 58, 10.1139/cgj-2014-0045 Dyka, 1997, Stress points for tension instability in SPH, Int. J. Numer. Meth. Eng., 40, 2325, 10.1002/(SICI)1097-0207(19970715)40:13<2325::AID-NME161>3.0.CO;2-8 EDEM, 2020. EDEM Creator. EDEM 2020.1 Documentation, Edinburgh, United Kingdom. Evans, 2009, Grain size distribution effects in 2D discrete numerical experiments, 58 Farhat, 1998, Torsional springs for two-dimensional dynamic unstructured fluid meshes, Comput. Methods Appl. Mech. Eng., 163, 231, 10.1016/S0045-7825(98)00016-4 Fern, 2019 Fraige, 2008, Vibration induced flow in hoppers: DEM 2D polygon model, Particuology, 6, 455, 10.1016/j.partic.2008.07.019 Francesca, 2020, Analysis of piezocone penetration under different drainage conditions with the two-phase material point method, J. Geotech. Geoenviron. Eng., 142, 04016066 Fu, 2012, Polyarc discrete element for efficiently simulating arbitrarily shaped 2D particles, Int. J. Numer. Meth. Eng., 89, 599, 10.1002/nme.3254 Fu, 2015, Relationship between void- and contact normal-based fabric tensors for 2D idealized granular materials, Int. J. Solids Struct., 63, 68, 10.1016/j.ijsolstr.2015.02.041 Garboczi, 2002, Three-dimensional mathematical analysis of particle shape using X-ray tomography and spherical harmonics: application to aggregates used in concrete, Cem. Concr. Res., 32, 1621, 10.1016/S0008-8846(02)00836-0 Ghaboussi, 1988, Fully deformable discrete element analysis using a finite element approach, Comput. Geotech., 5, 175, 10.1016/0266-352X(88)90001-8 Ghaboussi, 1990, Three-dimensional discrete element method for granular materials, Int. J. Numer. Anal. Meth. Geomech., 14, 451, 10.1002/nag.1610140702 Ghosh, 1991, An arbitrary Lagrangian-Eulerian finite element method for large deformation analysis of elastic-viscoplastic solids, Comput. Methods Appl. Mech. Eng., 86, 127, 10.1016/0045-7825(91)90126-Q Gilbert, 1988, Fast procedure for computing the distance between complex objects in three-dimensional space, IEEE J. Robot. Autom., 4, 193, 10.1109/56.2083 Govender, 2016, Blaze-DEMGPU: Modular high performance DEM framework for the GPU architecture, SoftwareX, 5, 62, 10.1016/j.softx.2016.04.004 Gray, 2001, SPH elastic dynamics, Comput. Methods Appl. Mech. Eng., 190, 6641, 10.1016/S0045-7825(01)00254-7 Guilkey, 2003, Implicit time integration for the material point method: quantitative and algorithmic comparisons with the finite element method, Int. J. Numer. Meth. Eng., 57, 1323, 10.1002/nme.729 Guo, 2013, The signature of shear-induced anisotropy in granular media, Comput. Geotech., 47, 1, 10.1016/j.compgeo.2012.07.002 Guo, 2014, A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media, Int. J. Numer. Meth. Eng., 99, 789, 10.1002/nme.4702 Hallquist, 2006 Hamad, 2017, Interaction of fluid–solid–geomembrane by the material point method, Comput. Geotech., 81, 112, 10.1016/j.compgeo.2016.07.014 He, 2020, Simulations of realistic granular soils in oedometer tests using physics engine, Int. J. Numer. Anal. Meth. Geomech., 44, 983, 10.1002/nag.3031 Heaney, C.E., Augarde, C.E., Deeks, A.J., Coombs, W.M. Crouch, R.S., 2010. Advances in meshless methods with application to geotechnics, Proc. NUMGE Trondheim, June 3-5, pp. 239–244. Helbing, 2000, Simulating dynamical features of escape panic, Nature, 407, 487, 10.1038/35035023 Higo, 2010, A Coupled MPM-FDM analysis method for multi-phase elasto-plastic soils, Soils Found., 50, 515, 10.3208/sandf.50.515 Hogue, 1998, Shape representation and contact detection for discrete element simulations of arbitrary geometries, Eng. Comput., 15, 374, 10.1108/02644409810208525 Hogue, 1994, Efficient computer simulation of moving granular particles, Powder Technol., 78, 51, 10.1016/0032-5910(93)02748-Y Horner, 2001, Large scale discrete element modelling of vehicle-soil interaction, J. Eng. Mech., 127, 1027, 10.1061/(ASCE)0733-9399(2001)127:10(1027) Hossain, 2005, Limiting cavity depth for spudcan foundations penetrating clay, Géotechnique, 55, 679, 10.1680/geot.2005.55.9.679 Houlsby, 2009, Potential particles: a method for modelling non-circular particles in DEM, Comput. Geotech., 36, 953, 10.1016/j.compgeo.2009.03.001 Hsiung, S.M., 2001. Discontinuous deformation analysis (DDA) with nth order polynomial displacement functions. In: Elworth, Tinucci, Heasley, (Eds.) Rock mechanics in the national interest, Swets & Zeitlinger Lisse, pp. 1437–1444. Hu, 2014, Predicting the resistance profile of a spudcan penetrating sand overlying clay, Can. Geotech. J., 51, 1151, 10.1139/cgj-2013-0374 Hu, 1998, A practical numerical approach for large deformation problems in soil, Int. J. Numer. Anal. Meth. Geomech., 22, 327, 10.1002/(SICI)1096-9853(199805)22:5<327::AID-NAG920>3.0.CO;2-X Hu, 1998, h-adaptive FE analysis of elasto-plastic non-homogeneous soil with large deformation, Comput. Geotech., 23, 61, 10.1016/S0266-352X(98)00012-3 Hu, 1999, Bearing response of skirted foundation on nonhomogeneous soil, J. Geotech. Geoenviron. Eng., 125, 924, 10.1061/(ASCE)1090-0241(1999)125:11(924) Huang, 2013, Effects of grain size and gradation on the dynamic responses of quartz sands, Int. J. Impact Eng., 59, 1, 10.1016/j.ijimpeng.2013.03.007 Huang, 2012, Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics, Landslides, 9, 275, 10.1007/s10346-011-0285-5 Iglberger, 2011, Large-scale rigid body simulations, Multibody Sys.Dyn., 25, 81, 10.1007/s11044-010-9212-0 Itasca Consulting Group, 2008. Continuum and distinct element numerical modeling in geo-engineering - 2008. In: Hart, R., Detournay, C., Cundall, P. (Eds.) Proceedings of the 1st International FLAC/DEM Symposium. Itasca International, Minneapolis, MN. Itasca Consulting Group, 2019. PFC2D (Particle Flow Code). Izadi, 2018, Simulating direct shear tests with the Bullet physics library: A validation study. Francesco Portioli (ed.), PLOS ONE, 13, 10.1371/journal.pone.0195073 Jassim, 2013, Two-phase dynamic analysis by material point method, Int. J. Numer. Anal. Meth. Geomech., 37, 2502, 10.1002/nag.2146 Jean, 1999, The non-smooth contact dynamics method, Comput. Methods Appl. Mech. Eng., 177, 235, 10.1016/S0045-7825(98)00383-1 Jeremić, 2001, Finite deformation analysis of geomaterials, Int. J. Numer. Anal. Meth. Geomech., 25, 809, 10.1002/nag.155 Ji, 2015, Discrete element modeling of rock materials with dilated polyhedral elements, Procedia Eng., 102, 1793, 10.1016/j.proeng.2015.01.316 Jing, 2002, Numerical methods in rock mechanics, Int. J. Rock Mech. Min. Sci., 39, 409, 10.1016/S1365-1609(02)00065-5 Kardani, 2017, On the application of the maximum entropy meshfree method for elastoplastic geotechnical analysis, Comput. Geotech., 84, 68, 10.1016/j.compgeo.2016.11.015 Kawamoto, 2016, Level set discrete element method for three-dimensional computations with triaxial case study, J. Mech. Phys. Solids, 91, 1, 10.1016/j.jmps.2016.02.021 Kiousis, 1986, A large strain theory for the two dimensional problems in geomechanics, Int. J. Numer. Anal. Meth. Geomech., 10, 17, 10.1002/nag.1610100103 Kiousis, 1988, A large strain theory and its application in the analysis of the cone penetration mechanism, Int. J. Numer. Anal. Meth. Geomech., 12, 45, 10.1002/nag.1610120104 Knuth, 2012, Discrete element modelling of a Mars Exploration Rover wheel in granular material, J. Terramech., 49, 27, 10.1016/j.jterra.2011.09.003 Konagai, 2001, Two dimensional Lagrangian particle finite-difference method for modeling large soil deformations, Structural Eng./ Earthquake Eng., JSCE, 18, 105 Koshizuka, 1996, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nucl. Sci. Eng., 123, 421, 10.13182/NSE96-A24205 Kozicki, 2008, A new open-source software developed for numerical simulations using discrete modelling methods, Comput. Methods Appl. Mech. Eng., 197, 4429, 10.1016/j.cma.2008.05.023 Krabbenhoft, 2012, Granular contact dynamics using mathematical programming methods, Comput. Geotech., 43, 165, 10.1016/j.compgeo.2012.02.006 Kuhn, 2014, Investigation of cyclic liquefaction with discrete element simulations, J. Geotech. Geoenviron. Eng., 140, 04014075, 10.1061/(ASCE)GT.1943-5606.0001181 Kuhn, 2015, Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability, Acta Geotech., 10, 399, 10.1007/s11440-015-0397-5 Latham, 2008, Three-dimensional particle shape acquisition and use of shape library for DEM and FEM/DEM simulation, Miner. Eng., 21, 797, 10.1016/j.mineng.2008.05.015 Leavers, 2000, Use of the two-dimensional Radon transform to generate a taxonomy of shape for the characterization of abrasive powder particles, IEEE Trans. Pattern Anal. Mach. Intell., 22, 1411, 10.1109/34.895975 Lee, 2016, A new Jameson-Schmidt-Turkel smooth particle hydrodynamics algorithm for large strain explicit fast dynamics, Comput. Methods Appl. Mech. Eng., 311, 71, 10.1016/j.cma.2016.07.033 Lee, 2015, iDEM: An impulse-based discrete element method for fast granular dynamics, Int. J. Numer. Meth. Eng., 104, 79, 10.1002/nme.4923 Lee, 2012, Simulation of triaxial compression tests with polyhedral discrete elements, Comput. Geotech., 43, 92, 10.1016/j.compgeo.2012.02.011 Lee, 2014 Lewis, 1998 Li, 2016, Application of the material point method to simulate the post-failure runout processes of the Wangjiayan landslide, Eng. Geol., 212, 1, 10.1016/j.enggeo.2016.07.014 Lim, 2015 Lin, 1996, Extensions of discontinuous deformation analysis for jointed rock masses, Int. J. Rock Mech. Min. Sci., Geomech. Abstr., 33, 671, 10.1016/0148-9062(96)00016-2 Lin, M.C., Canny, J.F., 1991. A fast algorithm for incremental distance calculation. In: 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA. Lin, 1997, A three-dimensional discrete element model using arrays of ellipsoids, Géotechnique, 47, 319, 10.1680/geot.1997.47.2.319 Liu, 2001, Procedure for contact detection in discrete element analysis, Adv. Eng. Softw., 32, 409, 10.1016/S0965-9978(00)00101-0 Liu, 2016, A nonlocal multiscale discrete-continuum model for predicting mechanical behavior of granular materials, Int. J. Numer. Meth. Eng., 106, 129, 10.1002/nme.5139 Lorenzo, 2018, Numerical simulation of installation of jacked piles in sand using material point method, Can. Geotech. J., 55, 131, 10.1139/cgj-2016-0455 Lötstedt, 1981, Coulomb friction in two-dimensional rigid body systems, ZAMM - Zeitschrift für Angew. Math. und Mech., 61, 605, 10.1002/zamm.19810611202 Lötstedt, 1982, Mechanical systems of rigid bodies subject to unilateral constraints, SIAM J. Appl. Math., 42, 281, 10.1137/0142022 Lu, 2004, A numerical study of cone penetration in clay, Géotechnique, 54, 257, 10.1680/geot.2004.54.4.257 Ma, 2014, Large deformation FE analysis of end-bearing piles installing in sand Ma, 2014, A new contact algorithm in the material point method for geotechnical simulations, Int. J. Numer. Anal. Meth. Geomech., 38, 1197, 10.1002/nag.2266 Ma, 2007, Material point method for impact and explosion problems, 156 Ma, 2009, Simulation of high explosive explosion using adaptive material point method, Comput. Modell. Eng. Sci. (CMES), 39, 101 Mahmoud, 2016, Discrete element analysis of railway ballast under cycling loading, Procedia Eng., 1431068 Masad, 2005 Masoero, 2010, Progressive collapse mechanisms of brittle and ductile framed structures, J. Eng. Mech., 136, 987, 10.1061/(ASCE)EM.1943-7889.0000143 Mast, 2012, Mitigating kinematic locking in the material point method, J. Comput. Phys., 231, 5351, 10.1016/j.jcp.2012.04.032 Matsushima, 2003, On the shear behavior of well-graded granular assembly, JSCE., 1, 1 Mirtich, 1996 Moaveni, 2013, Evaluation of aggregate size and shape by means of segmentation techniques and aggregate image processing algorithms, Transp. Res. Rec.: J. Transp. Res. Board, 2335, 50, 10.3141/2335-06 Moghadam, S.N., Deisman, N., Zambrano-Narvaez, G., Hazzard, J., et al., 2020. Fluid flow model in fractured rock by Finite Volume Black Oil Simulator (FVBOS) and 3DEC. In: Billaux, Hazzard, Nelson, and Schöpfer (Eds.). Proceedings of the 5th International Itasca Symposium. 2020 Vienna, Austria, Itasca International. Mollon, 2013, Generating realistic 3D sand particles using Fourier descriptors, Granular Matter, 15, 95, 10.1007/s10035-012-0380-x Monforte, 2017, Numerical simulation of undrained insertion problems in geotechnical engineering with the Particle Finite Element Method (PFEM), Comput. Geotech., 82, 144, 10.1016/j.compgeo.2016.08.013 Monforte, 2017, Performance of mixed formulations for the particle finite element method in soil mechanics problems, Comput. Particle Mech., 4, 269, 10.1007/s40571-016-0145-0 Monforte, 2019, A stable mesh-independent approach for numerical modelling of structured soils at large strains, Comput. Geotech., 116, 10.1016/j.compgeo.2019.103215 Moreau, 1994, Some numerical methods in multibody dynamics: application to granular materials, Eur. J. Mech. A. Solids, 13, 93 Moreau, 1995, Numerical experiments in granular dynamics: vibration-induced size segregation, 347 Munjiza, 2004 Naili, 2005, A 2D smoothed particle hydrodynamics method for liquefaction induced lateral spreading analysis, J. Appl. Mech., 8, 591, 10.2208/journalam.8.591 Najarro, J.A.V., Vargas, E.A., 2016. Numerical analysis of temperature effects on the stability of a rock slope. In: Gómez, Detournay, Hart, and Nelson (Eds.). Proceedings of the 4th Itasca Symposium on Applied Numerical Modelling in Geomechanics, Lima, Perú, Itasca International. pp. 167–175. Nassauer, 2013, Polyhedral particles for the discrete element method, Granular Matter, 15, 85, 10.1007/s10035-012-0381-9 Nazem, 2009, Arbitrary Lagrangian-Eulerian method for dynamic analysis of geotechnical problems, Comput. Geotech., 36, 549, 10.1016/j.compgeo.2008.11.001 Nazem, 2012, Dynamic analysis of a smooth penetrometer free-falling into uniform clay, Géotechnique, 62, 893, 10.1680/geot.10.P.055 Nazem, 2008, Arbitrary Lagrangian-Eulerian method for large-strain consolidation problems, Int. J. Numer. Anal. Meth. Geomech., 32, 1023, 10.1002/nag.657 Nezami, 2004, A fast contact detection algorithm for 3-D discrete element method, Comput. Geotech., 31, 575, 10.1016/j.compgeo.2004.08.002 Nezami, E.G., M. A. Hashash, Y., Zhao, D., Ghaboussi, J., 2006. Shortest link method for contact detection in discrete element method. Int. J. Numeric. Anal. Methods Geomech., 30(8), 783–801. Ng, 1994, Numerical simulations of granular soil using elliptical particles, Comput. Geotech., 16, 153, 10.1016/0266-352X(94)90019-1 Ng, 2009, Discrete element method simulations of the critical state of a granular material, Int. J. Geomech., 9, 209, 10.1061/(ASCE)1532-3641(2009)9:5(209) Noh, W.F., 1963. CEL: A time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code (No. UCRL-7463). Lawrence Radiation Lab., Univ. of California, Livermore. Nohara, 2018, Large deformation simulations of geomaterials using moving particle semi-implicit method, Journal of Rock Mechanics and Geotechnical Engineering, 10, 1122, 10.1016/j.jrmge.2018.06.005 Nøst, 2019 Noury, 2018, Role of floods on sinkhole occurrence in covered karst terrains: case study of the Orléans Area (France) during the 2016 meteorological event and perspectives for other karst environments Numada, M., Konagai, K., Ito, H., Johansson, J., 2003. Material point method for run-out analysis of earthquake-induced long-traveling soil flows. JSCE J. Earthquake Eng. 27, 227-227. NVIDIA, 2019. PhysX. Version: 9.19.0218. Oda, 1985, Stress-induced anisotropy in granular masses, Soils Found., 25, 85, 10.3208/sandf1972.25.3_85 O’Sullivan, 2011, Particle-based discrete element modelling: geomechanics perspective, Int. J. Geomech., 11, 449, 10.1061/(ASCE)GM.1943-5622.0000024 Oñate, 2004, The particle finite element method – an overview, Int. J. Comput. Methods, 1, 267, 10.1142/S0219876204000204 Owen, 2001, Parallelised finite/discrete element simulation of multi-fracturing solids and discrete systems, Eng. Comput., 18, 557, 10.1108/02644400110387154 Paixão, 2018, Photogrammetry for digital reconstruction of railway ballast particles – A cost-efficient method, Constr. Build. Mater., 191, 963, 10.1016/j.conbuildmat.2018.10.048 Park, 2021, Shared memory parallelization for high-fidelity large-scale 3D polyhedral particle simulations, Comput. Geotech., 137, 10.1016/j.compgeo.2021.104008 Peña, 2007, Influence of particle shape on sheared dense granular media, Granular Matter, 9, 279, 10.1007/s10035-007-0038-2 Peng, 2019, LOQUAT: an open-source GPU-accelerated SPH solver for geotechnical modelling, Acta Geotech., 14, 1269, 10.1007/s11440-019-00839-1 Phuong, 2016, Numerical investigation of pile installation effects in sand using material point method, Comput. Geotech., 73, 58, 10.1016/j.compgeo.2015.11.012 Pucker, 2013, CPT based prediction of foundation penetration in siliceous sand, Appl. Ocean Res., 41, 9, 10.1016/j.apor.2013.01.005 Qiu, 2011, Application of a Coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations, Comput. Geotech., 38, 30, 10.1016/j.compgeo.2010.09.002 Radjai, 2012, Fabric evolution and accessible geometrical states in granular materials, Granular Matter, 14, 259, 10.1007/s10035-012-0321-8 Ragni, 2016, Numerical modelling of the effects of consolidation on jack-up spudcan penetration, Comput. Geotech., 78, 25, 10.1016/j.compgeo.2016.05.002 Rashidi, 2005, Prediction of soil pressure-sinkage behavior using the finite element method, Int. J. Agric. Biol., 7, 460 Remmerswaal, G., 2017. Development and implementation of moving boundary conditions in the Material Point Method. Master's thesis, TU Delft. Sabetamal, 2016, Coupled analysis of dynamically penetrating anchors, Comput. Geotech., 77, 26, 10.1016/j.compgeo.2016.04.005 Sadeghirad, 2011, A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations, Int. J. Numer. Meth. Eng., 86, 1435, 10.1002/nme.3110 Sadeghirad, 2013, Second-order convected particle domain interpolation (CPDI2) with enrichment for weak discontinuities at material interfaces, Int. J. Numer. Meth. Eng., 95, 928, 10.1002/nme.4526 Sainsbury, D.P., Grubb, A., 2011. Investigation of extreme deformation at the N3500 Project. In: Sainsbury, Hart, Detournay, and Nelson (Eds.). Proceedings of the 2nd International FLAC/DEM Symposium. 2011 Melbourne, Australia, Itasca International. Sallam, 2004 Samimi, 2012, Three-dimensional simulation of fully coupled hydro-mechanical behavior of saturated porous media using Element Free Galerkin (EFG) method, Comput. Geotech., 46, 75, 10.1016/j.compgeo.2012.06.004 Shepard, 1968, A two-dimensional interpolation function for irregularly-spaced data, 517 Shi, 1985, Two-dimensional discontinuous deformation analysis, Int. J. Numer. Anal. Methods Geomech., 9, 541, 10.1002/nag.1610090604 Shi, 1988 Simo, 1993, A new class of algorithms for classical plasticity extended to finite strains. Application to geomaterials, Comput. Mech., 11, 253, 10.1007/BF00371865 Soga, 2016, Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method, Géotechnique, 66, 248, 10.1680/jgeot.15.LM.005 Sołowski, 2015, Evaluation of material point method for use in geotechnics, Int. J. Numer. Anal. Meth. Geomech., 39, 685, 10.1002/nag.2321 Søren Mikkel, 2009, 817 Steffen, 2008, Analysis and reduction of quadrature errors in the material point method (MPM), Int. J. Numer. Meth. Eng., 76, 922, 10.1002/nme.2360 Stomakhin, A., Schroeder, C., Chai, L., Teran, J., Selle, A., 2013. A material point method for snow simulation. ACM Trans. Graphics (TOG), 32, Article 102. Strack, O.D.L., Cundall, P.A., 1984. Fundamental studies of fabric in granular materials. Report to NSF, University of Minnesota. Su, 2020, A new interpretation of three-dimensional particle geometry: M-A-V-L, Transp. Geotech., 23, 10.1016/j.trgeo.2020.100328 Sulsky, 1994, A particle method for history-dependent materials, Comput. Methods Appl. Mech. Eng., 118, 179, 10.1016/0045-7825(94)90112-0 Sulsky, 1995, Application of a particle-in-cell method to solid mechanics, Comput. Phys. Commun., 87, 236, 10.1016/0010-4655(94)00170-7 Tavarez, 2007, Discrete element method for modelling solid and particulate materials, Int. J. Numer. Meth. Eng., 70, 379, 10.1002/nme.1881 Tehrani, 2016, Comparison of Press-Replace Method and Material Point Method for analysis of jacked piles, Comput. Geotech., 78, 38, 10.1016/j.compgeo.2016.04.017 Tian, 2014, Improving plate anchor design with a keying flap, J. Geotech. Geoenviron. Eng., 140, 04014009, 10.1061/(ASCE)GT.1943-5606.0001093 Thornton, 2000, Numerical simulations of deviatoric shear deformation of granular media, Géotechnique, 50, 43, 10.1680/geot.2000.50.1.43 Tran, 2019, Modelling 3D desiccation cracking in clayey soils using a size-dependent SPH computational approach, Comput. Geotech., 116, 10.1016/j.compgeo.2019.103209 Tran, 2019, Temporal and null-space filter for the material point method, Int. J. Numer. Meth. Eng., 120, 328, 10.1002/nme.6138 Trujillo-Vela, 2020, Smooth particle hydrodynamics and discrete element method coupling scheme for the simulation of debris flows, Comput. Geotech., 125, 10.1016/j.compgeo.2020.103669 Tutumluer, 2013, Discrete element modelling of ballasted track deformation behaviour, Int. J. Rail Transp., 1, 57, 10.1080/23248378.2013.788361 Tutumluer, 2000 Utili, S., Nova, R., 2008. A study of cliffs subject to degradation by DEM. In: Hart, Detournay, and Cundall (Eds.). Proceedings of the 1st International FLAC/DEM Symposium. 2008 Minneapolis, MN, Itasca International. Vavourakis, 2013, Remeshing and remapping strategies for large deformation elastoplastic finite element analysis, Comput. Struct., 114–115, 133, 10.1016/j.compstruc.2012.09.010 Vavourakis, 2013, A robust finite element approach for large deformation elastoplastic plane-strain problems, Finite Element Anal. Des., 77, 1, 10.1016/j.finel.2013.08.003 Vermeer, 2008, A quasi-static method for large deformation problems in geomechanics, 55 Vorobiev, 2012, Simple common plane contact algorithm, Int. J. Numer. Meth. Eng., 90, 243, 10.1002/nme.3324 Walther, 2009, Large-scale parallel discrete element simulations of granular flow, Eng. Comput., 26, 688, 10.1108/02644400910975478 Wang, 2016, Investigation of retrogressive and progressive slope failure mechanisms using the material point method, Comput. Geotech., 78, 88, 10.1016/j.compgeo.2016.04.016 Wang, 2016, Development of an implicit material point method for geotechnical applications, Comput. Geotech., 71, 159, 10.1016/j.compgeo.2015.08.008 Wang, 2015, Large deformation finite element analyses in geotechnical engineering, Comput. Geotech., 65, 104, 10.1016/j.compgeo.2014.12.005 Wang, 2010, Three-dimensional large deformation finite-element analysis of plate anchors in uniform clay, J. Geotech. Geoenviron. Eng., 136, 355, 10.1061/(ASCE)GT.1943-5606.0000210 Wang, 2011, Particle shape effects in discrete element modelling of cohesive angular particles, Granular Matter, 13, 1, 10.1007/s10035-010-0217-4 Wang, 2002, A point interpolation meshless method based on radial basis functions, Int. J. Numer. Meth. Eng., 54, 1623, 10.1002/nme.489 Wang, 2017, Modelling screwpile installation using the MPM, Procedia Eng., 175, 124, 10.1016/j.proeng.2017.01.040 Wendland, 1999, Meshless Galerkin methods using radial basis functions, Math. Comput., 68, 1521, 10.1090/S0025-5718-99-01102-3 Wieckowski, 2004, The material point method in large strain engineering problems, Comput. Methods Appl. Mech. Eng., 193, 4417, 10.1016/j.cma.2004.01.035 Williams, 1992, Superquadrics and modal dynamics for discrete elements in interactive design, Eng. Comput., 9, 115, 10.1108/eb023852 Williams, 1999, Discrete element simulation and the contact problem, Arch. Comput. Methods Eng., 6, 279, 10.1007/BF02818917 Winslow, 1963 Woo, 2018, Simulation of penetration of a foundation element in Tresca soil using the generalized interpolation material point method (GIMP), Comput. Geotech., 94, 106, 10.1016/j.compgeo.2017.08.007 Xu, 2018, Three-dimensional material point method modelling of runout behavior of the Hongshiyan landslide, Can. Geotech. J., 56, 1318, 10.1139/cgj-2017-0638 Yang, 2002, Discrete-finite element modelling of pharmaceutical powder compaction: a two-stage contact detection algorithm for non-spherical particles, 74 Yerro, 2015, The material point method for unsaturated soils, Géotechnique, 65, 201, 10.1680/geot.14.P.163 Yerro, 2019, Runout evaluation of Oso landslide with the material point method, Can. Geotech. J., 56, 1304, 10.1139/cgj-2017-0630 Yimsiri, 2010, DEM analysis of soil fabric effects on behaviour of sand, Géotechnique, 60, 483, 10.1680/geot.2010.60.6.483 Yu, 2012, Numerical study of spudcan penetration in loose sand overlying clay, Comput. Geotech., 46, 1, 10.1016/j.compgeo.2012.05.012 Yuan, 2017, Finite deformation elasto-plastic consolidation analysis of soft clay by the weak form quadrature element method, J. Zhejiang Univ.-SCIENCE A, 18, 942, 10.1631/jzus.A1600671 Yuan, 2019, Development of an explicit smoothed particle finite element method for geotechnical applications, Comput. Geotech., 106, 42, 10.1016/j.compgeo.2018.10.010 Zabala, 2011, Progressive failure of Aznalcóllar dam using the material point method, Géotechnique, 61, 795, 10.1680/geot.9.P.134 Zhang, B., Lee, S.J., Qian, Y., Tutumluer, E., Bhattacharya, S., 2016. A smartphone-based image analysis technique for ballast aggregates. In: International Conference on Transportation and Development, American Society of Civil Engineers, pp. 623–630. Zhang, 2009, Material point method for dynamic analysis of saturated porous media under external contact/impact of solid bodies, Comput. Methods Appl. Mech. Eng., 198, 1456, 10.1016/j.cma.2008.12.006 Zhang, 2019, Simulation of dynamic compaction and analysis of its efficiency with the material point method, Comput. Geotech., 116, 10.1016/j.compgeo.2019.103218 Zhang, 2020, Practical large-deformation finite-element method for 3d geotechnical problems involving free surface deformations, Int. J. Geomech., 20, 04020048, 10.1061/(ASCE)GM.1943-5622.0001648 Zhao, 2006, Three-dimensional discrete element simulation for granular materials, Eng. Comput., 23, 749, 10.1108/02644400610689884 Zhao, S., Bui, H.H., Lemiale, V., Nguyen, G.D., 2017a. SPH simulation of strain localisation in geomaterials using a visco-plastic constitutive model. In: Vandamme, et al., (Eds.) Poromechanics VI: Proceedings of the Sixth Biot Conference on Poromechanics, pp. 1876–1883. Zhao, 2017, MPM simulations of dam-break floods, J. Hydrodyn., 29, 397, 10.1016/S1001-6058(16)60749-7 Zhao, 2019, Discrete element simulation of cylindrical particles using super-ellipsoids, Particuology, 46, 55, 10.1016/j.partic.2018.04.007 Zhu, 2018, SPH-based simulation of flow process of a landslide at Hongao landfill in China, Nat. Hazards, 93, 1113, 10.1007/s11069-018-3342-8 Zhu, 2016, Numerical simulation of earthquake-induced landslide run-out, Japanese Geotech. Soc. Special Publ., 2, 938 Zhu, C., Chen, Z., Huang, Y. 2021. Coupled moving particle simulation–finite-element method analysis of fluid–structure interaction in geodisasters. Int. J. Geomech. 21(6), 04021081. Zienkiewicz, 1992, The superconvergent patch recovery and a posteriori error estimates. Part 1: the recovery technique, Int. J. Numer. Meth. Eng., 33, 1331, 10.1002/nme.1620330702