Numerical modeling of experimental human fibrous cap delamination

Xiaochang Leng1, Lindsey A. Davis2, Xiaomin Deng3, Michael A. Sutton3, Susan M. Lessner2
1Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208, USA
2Department of Cell Biology & Anatomy, University of South Carolina, Columbia, SC 29208, USA
3Department of Mechanical Engineering, University of South Carolina, Columbia, SC 29208 USA

Tài liệu tham khảo

ABAQUS, 2013. Analysis user’s manual version 6.12, Dassault Systemes Corp. Assemat, 2013, Evolution and rupture of vulnerable plaques: a review of mechanical effects, Chronophysiol. Ther., 23 Badel, 2014, Numerical simulation of arterial dissection during balloon angioplasty of atherosclerotic coronary arteries, J. Biomech., 47, 878, 10.1016/j.jbiomech.2014.01.009 Badimon, 2014, Thrombosis formation on atherosclerotic lesions and plaque rupture, J. Intern. Med., 276, 618, 10.1111/joim.12296 Balzani, 2012, Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls, Comput. Methods Appl. Mech. Eng., 213–216, 139, 10.1016/j.cma.2011.11.015 Chen, 2013, Simulation of stable tearing crack growth events using the cohesive zone model approach, Eng. Fract. Mech., 99, 223, 10.1016/j.engfracmech.2012.12.017 Chen, 2014, An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations, Int. J. Mech. Sci., 79, 206, 10.1016/j.ijmecsci.2013.12.006 Cilla, 2012, 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses, Biomech. Model. Mechanobiol., 11, 1001, 10.1007/s10237-011-0369-0 Ferrara, 2010, A numerical study of arterial media dissection processes, Int. J. Fract., 166, 21, 10.1007/s10704-010-9480-y Gasser, 2006, Modeling the propagation of arterial dissection, Eur. J. Mech.-A/Solids, 25, 617, 10.1016/j.euromechsol.2006.05.004 Gasser, 2007, Modeling plaque fissuring and dissection during balloon angioplasty intervention, Ann. Biomed. Eng., 35, 711, 10.1007/s10439-007-9258-1 Gasser, 2006, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface/R. Soc., 3, 15, 10.1098/rsif.2005.0073 Heidenreich, 2011, Circulation, 123, 933, 10.1161/CIR.0b013e31820a55f5 Holzapfel, 2000 Holzapfel, 2002, A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis, Eur. J. Mech.-A/Solids, 21, 441, 10.1016/S0997-7538(01)01206-2 Holzapfel, 2000, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast., 61, 1, 10.1023/A:1010835316564 Holzapfel, 2005, Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling, Am. J. Heart Circ. Physiol., 289, H2048, 10.1152/ajpheart.00934.2004 Honye, 1992, Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging, Circulation, 85, 1012, 10.1161/01.CIR.85.3.1012 Jensen, 2006, Intravascular ultrasound assessment of fibrous cap remnants after coronary plaque rupture, Am. Heart J., 152, 327, 10.1016/j.ahj.2005.12.019 Kiousis, 2009, A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example, Journal of Biomechanical Engineering, 131, 121002, 10.1115/1.4000078 Kolodgie, 2007, Pathology of atherosclerosis and stenting, Neuroimaging Clin. N. Am., 17, 285, 10.1016/j.nic.2007.03.006 Leng, 2015, Modeling of experimental atherosclerotic plaque delamination, Ann. Biomed. Eng., 1 Leng, 2015, Simulation of Atherosclerotic Plaque Delamination Using the Cohesive Zone Model, 81 Li, 2008, Assessment of carotid plaque vulnerability using structural and geometrical determinants, Circ. J., 72, 1092, 10.1253/circj.72.1092 Loree, 1992, Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels, Circ. Res., 71, 850, 10.1161/01.RES.71.4.850 Ortiz, 1999, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. Numer. Methods Eng., 44, 1267, 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7 Unterberger, 2013, Viscoelasticity of cross-linked actin networks: experimental tests, mechanical modeling and finite-element analysis, Acta biomaterialia, 9, 7343, 10.1016/j.actbio.2013.03.008 Roy, 2001, Simulation of ductile crack growth in thin aluminum panels using 3-D surface cohesive elements, Int. J. Fract., 110, 21, 10.1023/A:1010816201891 Schwartz, 2007, Plaque rupture in humans and mice, Arterioscler. Thromb. Vasc. Biol., 27, 705, 10.1161/01.ATV.0000261709.34878.20 Siegmund, 1997, A numerical study of dynamic crack growth in elastic-viscoplastic solids, Int. J. Solids Struct., 34, 769, 10.1016/S0020-7683(96)00062-5 Sommer, 2012, 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries, J. Mech. Behav. Biomed. Mater., 5, 116, 10.1016/j.jmbbm.2011.08.013 Sun, 2008, Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models, J. Biomech. Eng., 130, 061003, 10.1115/1.2979872 Tong, 2011, Dissection properties and mechanical strength of tissue components in human carotid bifurcations, Ann. Biomed. Eng., 39, 1703, 10.1007/s10439-011-0264-y Turon, 2006, A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mech. Mater., 38, 1072, 10.1016/j.mechmat.2005.10.003 2007, 37 Wang, 2013, Adhesive strength of atherosclerotic plaque in a mouse model depends on local collagen content and elastin fragmentation, J. Biomech., 46, 716, 10.1016/j.jbiomech.2012.11.041 Wang, 2014, Quantitative measurement of dissection resistance in intimal and medial layers of human coronary arteries, Exp. Mech., 54, 677, 10.1007/s11340-013-9836-0 Wang, 2011, Development of a quantitative mechanical test of atherosclerotic plaque stability, J. Biomech., 44, 2439, 10.1016/j.jbiomech.2011.06.026 Zhou, 2015, The biaxial active mechanical properties of the porcine primary renal artery, J. Mech. Behav. Biomed. Mater., 48, 28, 10.1016/j.jmbbm.2015.04.004 Zhou, 2014, A structure-motivated model of the passive mechanical response of the primary porcine renal artery, J. Mech. Med. Biol., 14, 1450033, 10.1142/S021951941450033X