Numerical modeling of experimental human fibrous cap delamination
Tài liệu tham khảo
ABAQUS, 2013. Analysis user’s manual version 6.12, Dassault Systemes Corp.
Assemat, 2013, Evolution and rupture of vulnerable plaques: a review of mechanical effects, Chronophysiol. Ther., 23
Badel, 2014, Numerical simulation of arterial dissection during balloon angioplasty of atherosclerotic coronary arteries, J. Biomech., 47, 878, 10.1016/j.jbiomech.2014.01.009
Badimon, 2014, Thrombosis formation on atherosclerotic lesions and plaque rupture, J. Intern. Med., 276, 618, 10.1111/joim.12296
Balzani, 2012, Constitutive framework for the modeling of damage in collagenous soft tissues with application to arterial walls, Comput. Methods Appl. Mech. Eng., 213–216, 139, 10.1016/j.cma.2011.11.015
Chen, 2013, Simulation of stable tearing crack growth events using the cohesive zone model approach, Eng. Fract. Mech., 99, 223, 10.1016/j.engfracmech.2012.12.017
Chen, 2014, An inverse analysis of cohesive zone model parameter values for ductile crack growth simulations, Int. J. Mech. Sci., 79, 206, 10.1016/j.ijmecsci.2013.12.006
Cilla, 2012, 3D computational parametric analysis of eccentric atheroma plaque: influence of axial and circumferential residual stresses, Biomech. Model. Mechanobiol., 11, 1001, 10.1007/s10237-011-0369-0
Ferrara, 2010, A numerical study of arterial media dissection processes, Int. J. Fract., 166, 21, 10.1007/s10704-010-9480-y
Gasser, 2006, Modeling the propagation of arterial dissection, Eur. J. Mech.-A/Solids, 25, 617, 10.1016/j.euromechsol.2006.05.004
Gasser, 2007, Modeling plaque fissuring and dissection during balloon angioplasty intervention, Ann. Biomed. Eng., 35, 711, 10.1007/s10439-007-9258-1
Gasser, 2006, Hyperelastic modelling of arterial layers with distributed collagen fibre orientations, J. R. Soc. Interface/R. Soc., 3, 15, 10.1098/rsif.2005.0073
Heidenreich, 2011, Circulation, 123, 933, 10.1161/CIR.0b013e31820a55f5
Holzapfel, 2000
Holzapfel, 2002, A structural model for the viscoelastic behavior of arterial walls: Continuum formulation and finite element analysis, Eur. J. Mech.-A/Solids, 21, 441, 10.1016/S0997-7538(01)01206-2
Holzapfel, 2000, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J. Elast., 61, 1, 10.1023/A:1010835316564
Holzapfel, 2005, Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling, Am. J. Heart Circ. Physiol., 289, H2048, 10.1152/ajpheart.00934.2004
Honye, 1992, Morphological effects of coronary balloon angioplasty in vivo assessed by intravascular ultrasound imaging, Circulation, 85, 1012, 10.1161/01.CIR.85.3.1012
Jensen, 2006, Intravascular ultrasound assessment of fibrous cap remnants after coronary plaque rupture, Am. Heart J., 152, 327, 10.1016/j.ahj.2005.12.019
Kiousis, 2009, A methodology to analyze changes in lipid core and calcification onto fibrous cap vulnerability: the human atherosclerotic carotid bifurcation as an illustratory example, Journal of Biomechanical Engineering, 131, 121002, 10.1115/1.4000078
Kolodgie, 2007, Pathology of atherosclerosis and stenting, Neuroimaging Clin. N. Am., 17, 285, 10.1016/j.nic.2007.03.006
Leng, 2015, Modeling of experimental atherosclerotic plaque delamination, Ann. Biomed. Eng., 1
Leng, 2015, Simulation of Atherosclerotic Plaque Delamination Using the Cohesive Zone Model, 81
Li, 2008, Assessment of carotid plaque vulnerability using structural and geometrical determinants, Circ. J., 72, 1092, 10.1253/circj.72.1092
Loree, 1992, Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels, Circ. Res., 71, 850, 10.1161/01.RES.71.4.850
Ortiz, 1999, Finite-deformation irreversible cohesive elements for three-dimensional crack-propagation analysis, Int. J. Numer. Methods Eng., 44, 1267, 10.1002/(SICI)1097-0207(19990330)44:9<1267::AID-NME486>3.0.CO;2-7
Unterberger, 2013, Viscoelasticity of cross-linked actin networks: experimental tests, mechanical modeling and finite-element analysis, Acta biomaterialia, 9, 7343, 10.1016/j.actbio.2013.03.008
Roy, 2001, Simulation of ductile crack growth in thin aluminum panels using 3-D surface cohesive elements, Int. J. Fract., 110, 21, 10.1023/A:1010816201891
Schwartz, 2007, Plaque rupture in humans and mice, Arterioscler. Thromb. Vasc. Biol., 27, 705, 10.1161/01.ATV.0000261709.34878.20
Siegmund, 1997, A numerical study of dynamic crack growth in elastic-viscoplastic solids, Int. J. Solids Struct., 34, 769, 10.1016/S0020-7683(96)00062-5
Sommer, 2012, 3D constitutive modeling of the biaxial mechanical response of intact and layer-dissected human carotid arteries, J. Mech. Behav. Biomed. Mater., 5, 116, 10.1016/j.jmbbm.2011.08.013
Sun, 2008, Numerical approximation of tangent moduli for finite element implementations of nonlinear hyperelastic material models, J. Biomech. Eng., 130, 061003, 10.1115/1.2979872
Tong, 2011, Dissection properties and mechanical strength of tissue components in human carotid bifurcations, Ann. Biomed. Eng., 39, 1703, 10.1007/s10439-011-0264-y
Turon, 2006, A damage model for the simulation of delamination in advanced composites under variable-mode loading, Mech. Mater., 38, 1072, 10.1016/j.mechmat.2005.10.003
2007, 37
Wang, 2013, Adhesive strength of atherosclerotic plaque in a mouse model depends on local collagen content and elastin fragmentation, J. Biomech., 46, 716, 10.1016/j.jbiomech.2012.11.041
Wang, 2014, Quantitative measurement of dissection resistance in intimal and medial layers of human coronary arteries, Exp. Mech., 54, 677, 10.1007/s11340-013-9836-0
Wang, 2011, Development of a quantitative mechanical test of atherosclerotic plaque stability, J. Biomech., 44, 2439, 10.1016/j.jbiomech.2011.06.026
Zhou, 2015, The biaxial active mechanical properties of the porcine primary renal artery, J. Mech. Behav. Biomed. Mater., 48, 28, 10.1016/j.jmbbm.2015.04.004
Zhou, 2014, A structure-motivated model of the passive mechanical response of the primary porcine renal artery, J. Mech. Med. Biol., 14, 1450033, 10.1142/S021951941450033X