Numerical modeling of elasto-plastic porous materials with void shape effects at finite deformations
Tài liệu tham khảo
ABAQUS/Standard Version 6.9,2009. Users manual, Dassault Systems, Simulia Corp., Providence, RI, USA.
Aravas, 1992, Finite elastoplastic transformations of transversely isotropic metals, Int J Solids Struct, 29, 2137, 10.1016/0020-7683(92)90062-X
Aravas, 2004, Numerical methods for porous metals with deformation-induced anisotropy, Comput Methods Appl Mech Eng, 193, 3767, 10.1016/j.cma.2004.02.009
Bao, 2004, On fracture locus in the equivalent strain and stress triaxiality space, Int J Mech Sci, 46, 81, 10.1016/j.ijmecsci.2004.02.006
Barsoum, 2007, Rupture mechanisms in combined tension and shear experiments, Int J Solids Struct, 44, 1768, 10.1016/j.ijsolstr.2006.09.031
Benzerga, 2002, Micromechanics of coalescence in ductile fracture, J Mech Phys Solids, 50, 1331, 10.1016/S0022-5096(01)00125-9
Benzerga, 2004, Anisotropic ductile fracture: Part I: Experiments, Acta Mater, 52, 4623, 10.1016/j.actamat.2004.06.020
Benzerga, 2004, Anisotropic ductile fracture: Part II: Theory, Acta Mater, 52, 4639, 10.1016/j.actamat.2004.06.019
Benzerga, 2010, Ductile fracture by void growth to coalescence, Adv Appl Mech, 44, 170
Boisot, 2011, Experimental investigations and modeling of volume change induced by void growth in polyamide 11, Int J Solids Struct, 48, 2642, 10.1016/j.ijsolstr.2011.05.016
Budiansky, 1982, Void growth and collapse in viscous solids, 13
Chu, 1980, Void nucleation effects in biaxially stretched sheets, J Eng Mater Technol, 102, 249, 10.1115/1.3224807
Dafalias, 1985, The plastic spin, J Appl Mech, 52, 865, 10.1115/1.3169160
Danas, K., 2008. Homogenization-based constitutive models for viscoplastic porous media with evolving microstructure. Ph.D. thesis, LMS, École Polytechnique: <http://www.polymedia.polytechnique.fr/Center.cfm?Table=These>.
Danas, 2008, Homogenization-based constitutive model for two-dimensional viscoplastic porous media, CR Mec, 336, 79, 10.1016/j.crme.2007.10.017
Danas, 2008, Homogenization-based constitutive model for isotropic viscoplastic porous media, Int J Solids Struct, 45, 3392, 10.1016/j.ijsolstr.2008.02.007
Danas, 2009, A finite-strain model for anisotropic viscoplastic porous media: I – Theory, Eur J Mech A: Solids, 28, 387, 10.1016/j.euromechsol.2008.11.002
Danas, 2009, A finite-strain model for anisotropic viscoplastic porous media: II – Applications, Eur J Mech A: Solids, 28, 402, 10.1016/j.euromechsol.2008.11.003
Danas, K., Ponte Castañeda, P. Influence of the Lode parameter and the stress triaxiality on the failure of elasto-plastic porous materials; in preparation.
Dunand, 2011, Optimized butterfly specimen for the fracture testing of sheet materials under combined normal and shear loading, Eng Fract Mech, 78, 2919, 10.1016/j.engfracmech.2011.08.008
Dunand, 2010, Hybrid experimental-numerical analysis of basic ductile fracture experiments for sheet metals, Int J Solids Struct, 47, 1130, 10.1016/j.ijsolstr.2009.12.011
Eshelby, 1957, The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc R Soc Lond A, 241, 376, 10.1098/rspa.1957.0133
Feld-Payet, 2011, Finite element analysis of damage in ductile structures using a nonlocal model combined with a three-field formulation, Int J Damage Mech, 20, 655, 10.1177/1056789511405935
Flandi, 2005, A new model for porous nonlinear viscous solids incorporating void shape effects – I: Theory, Eur J Mech A: Solids, 24, 537, 10.1016/j.euromechsol.2005.03.003
Fleck, 1986, Void growth in shear, Proc R Soc Lond A, 407, 435, 10.1098/rspa.1986.0104
Gaˇraˇjeu, 2000, A micromechanical approach of damage in viscoplastic materials by evolution in size, shape and distribution of voids, Comput Methods Appl Mech Eng, 183, 223, 10.1016/S0045-7825(99)00220-0
Garrison, 1987, Ductile fracture, J Phys Chem Solids, 48, 1035, 10.1016/0022-3697(87)90118-1
Ghahremaninezhad A, Ravi-Chandar K. Ductile failure in polycrystalline OFHC copper. Int J Solids Struct; in press. doi:10.1016/j.ijsolstr.2011.07.001 [Corrected Proof].
Gologanu, 1993, Approximate models for ductile metals containing non-spherical voids – case of axisymmetric prolate ellipsoidal cavities, J Mech Phys Solids, 41, 1723, 10.1016/0022-5096(93)90029-F
Gologanu, 1994, Approximate models for ductile metals containing non-spherical voids – case of axisymmetric oblate ellipsoidal cavities, ASME J Eng Mater Technol, 116, 290, 10.1115/1.2904290
Gologanu, 1997, Recent extensions of Gurson’s model for porous ductile metals, 61
Gurson, 1977, Continuum theory of ductile rupture by void nucleation and growth, J Eng Mater Technol, 99, 2, 10.1115/1.3443401
Hashin, 1962, The elastic moduli of heterogeneous materials, J Appl Mech, 143, 10.1115/1.3636446
Hill, 1978, Aspects of invariance in solids mechanics, vol. 18
Idiart, 2006, Macroscopic behavior and field fluctuations in viscoplastic composites: second-order estimates versus full-field simulations, J Mech Phys Solids, 46, 1029, 10.1016/j.jmps.2005.11.004
Idiart, 2008, Modeling the macroscopic behavior of two-phase nonlinear composites by infinite-rank laminates, J Mech Phys Solids, 56, 2599, 10.1016/j.jmps.2008.03.004
Idiart, 2008, The macroscopic behavior of power-law and ideally plastic materials with elliptical distribution of porosity, Mech Res Commun, 35, 583, 10.1016/j.mechrescom.2008.06.002
Johnson, 1985, Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures, Eng Fract Mech, 21, 31, 10.1016/0013-7944(85)90052-9
Kailasam, 2000, Porous metals with developing anisotropy: constitutive models, computational issues and applications to deformation processing, Comput Model Eng Sci, 1, 105
Kailasam, 1997, The evolution of anisotropy in porous materials and its implications for shear localization, 365
Kailasam, 1998, A general constitutive theory for linear and nonlinear particulate media with microstructure evolution, J Mech Phys Solids, 46, 427, 10.1016/S0022-5096(97)00095-1
Kailasam, 1997, The effect of particle size, shape, distribution and their evolution on the constitutive response of nonlinearly viscous composites. I. Theory, Philos Trans R Soc Lond A, 355, 1835, 10.1098/rsta.1997.0092
Kailasam, 1997, The effect of particle size, shape, distribution and their evolution on the constitutive response of nonlinearly viscous composites. II. Examples, Philos Trans R Soc Lond A, 355, 1853, 10.1098/rsta.1997.0093
Leblond, 2008, External estimate of the yield surface of an arbitrary ellipsoid containing a confocal void, CR Méc, 336, 813, 10.1016/j.crme.2008.10.006
Leblond, 1994, Exact results and approximate models for porous viscoplastic solids, Int J Plasticity, 10, 213, 10.1016/0749-6419(94)90001-9
Michel, 1992, The constitutive law of nonlinear viscous and porous materials, J Mech Phys Solids, 40, 783, 10.1016/0022-5096(92)90004-L
Mohr, 2009, Plasticity and fracture of martensitic boron steel under plane stress conditions, Int J Solids Struct, 46, 3535, 10.1016/j.ijsolstr.2009.05.011
Mohr, 2007, Calibration of stress-triaxiality dependent crack formation criteria: a new hybrid experimental numerical method, Exp Mech, 47, 805, 10.1007/s11340-007-9039-7
Monchiet, 2007, An improvement of Gurson-type models of porous materials by using Eshelby-like trial velocity fields, CR Mec, 335, 32, 10.1016/j.crme.2006.12.002
Nahshon, 2008, Modification of the Gurson model for shear failure, Eur J Mech A: Solids, 27, 1, 10.1016/j.euromechsol.2007.08.002
Needleman, 1978, Limits to ductility set by plastic flow localization, 237
Ponte Castañeda, 1991, The effective mechanical properties of nonlinear isotropic composites, J Mech Phys Solids, 39, 45, 10.1016/0022-5096(91)90030-R
Ponte Castañeda, 1991, Effective properties in power-law creep, vol. 2, 218
Ponte Castañeda, 2002, Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. I. Theory, J Mech Phys Solids, 50, 737, 10.1016/S0022-5096(01)00099-0
Ponte Castañeda, 2002, Second-order homogenization estimates for nonlinear composites incorporating field fluctuations. II. Applications, J Mech Phys Solids, 50, 759, 10.1016/S0022-5096(01)00098-9
Ponte Castañeda, 1995, The effect of spatial distribution on the effective behavior of composite materials and cracked media, J Mech Phys Solids, 43, 1919, 10.1016/0022-5096(95)00058-Q
Ponte Castañeda, 1994, Constitutive models for porous materials with evolving microstructure, J Mech Phys Solids, 42, 1459, 10.1016/0022-5096(94)90005-1
Rice, 1969, On the ductile enlargement of voids in triaxial fields, J Mech Phys Solids, 17, 201, 10.1016/0022-5096(69)90033-7
Rice, 1976, The localization of plastic deformation, 207
Scheyvaerts, 2011, The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension, J Mech Phys Solids, 59, 373, 10.1016/j.jmps.2010.10.003
Suquet, 1993, Overall potentials and extremal surfaces of power law or ideally plastic materials, J Mech Phys Solids, 41, 981, 10.1016/0022-5096(93)90051-G
Suquet, 1995, Overall properties of nonlinear composites: a modified secant moduli theory and its link with Ponte Castañeda’s nonlinear variational procedure, CR Acad Sci Paris II, 320, 563
Tvergaard, 1981, Influence of voids on shear band instabilities under plane strain conditions, Int J Fract, 17, 389, 10.1007/BF00036191
Tvergaard, 1990, Material failure by void growth, Adv Appl Mech, 27, 83, 10.1016/S0065-2156(08)70195-9
Tvergaard, 2009, Behaviour of voids in a shear field, Int J Fract, 158, 41, 10.1007/s10704-009-9364-1
Vincent, 2008, Yield criterion for a rigid-ideally plastic material with randomly oriented cracks, CR Mec, 336, 297, 10.1016/j.crme.2007.11.020
Willis JR. Variational principles and bounds for the overall properties of composites. In: Provan J, editor, Continuum models and discrete systems, vol. 2; 1978. p. 185–212.
Willis, 1981, Variational and related methods for the overall properties of composites, Adv Appl Mech, 21, 1, 10.1016/S0065-2156(08)70330-2
Willis, 1991, On methods for bounding the overall properties of nonlinear composites, J Mech Phys Solids, 39, 73, 10.1016/0022-5096(91)90031-I