Mô hình số về sự phát thải hợp chất hữu cơ bay hơi từ thảm nhiều lớp

Heat and Mass Transfer - Tập 49 - Trang 1009-1019 - 2013
Huan Xie1, Chang Nyung Kim2
1Department of Mechanical Engineering, Graduate School, Kyung Hee University, Yong-in, Korea
2Department of Mechanical Engineering, College of Engineering, Kyung Hee University, Yong-in, Korea

Tóm tắt

Một mô hình số mới dự đoán sự phát thải hợp chất hữu cơ bay hơi (VOCs) từ một tấm thảm nhiều lớp có hạt than hoạt tính đã được phát triển với mục tiêu tăng cường tỷ lệ phát thải VOCs trong thảm trước khi sử dụng trong môi trường trong nhà. Những ảnh hưởng của hạt than hoạt tính, hệ số khuếch tán, độ dày vật liệu và hệ số phân chia lên nồng độ VOCs bên không khí tạm thời và sự phát thải VOCs từ thảm đã được nghiên cứu chi tiết.

Từ khóa

#Phát thải VOCs #thảm nhiều lớp #hạt than hoạt tính #mô hình số #môi trường trong nhà.

Tài liệu tham khảo

Yu C, Crump D (1998) A review of the emission of VOCs from polymeric materials used in buildings. Build Environ 22:357–374 Cox SS, Zhao D, John CL (2001) Measuring partition and diffusion coefficient for volatile organic compounds in vinyl flooring. Atmos Environ 35:3823–3830 Schaffer VH, Bhooshan B, Chen SB, Sonenthal JS (1996) Characterization of volatile organic chemical emissions from carpet cushions. J Air Waste Manage 46:813–820 Yang X, Chen Q, Zhang JS, Magee R, Zeng J, Shaw CY (2001) Numerical simulation of VOC emissions from dry materials. Build Environ 36:1099–1107 Huang H, Haghighat F (2002) Modeling of volatile organic compounds emission from dry building materials. Build Environ 37:1127–1138 Deng B, Kim CN, Zhang F (2007) Numerical simulation of VOCs distribution in a room with a new carpet. Heat Mass Transf 43(10):975–983 Kumar D, Little JC (2003) Characterizing the source/sink behavior of double-layer building material. Atmos Environ 37:5529–5537 Hu HP, Zhang YP, Wang XK, Little JC (2007) An analytical mass transfer model for predicting VOC emissions from multi-layered building materials with convective surfaces on both sides. Int J Heat Mass Transf 50:2069–2077 Deng BQ, Tang SM, Kim JT, Kim CN (2010) Numerical modeling of volatile organic compound emissions from multi-layer dry building materials. Korean J Chem Eng 27(4):1049–1055 Murakami S, Kato S, Ito K, Yamamoto A, Kondo Y, Fujimura J (2001) Distribution of chemical pollutants in a room based on CFD simulation coupled with emission/sorption analysis. ASHRAE Trans 107:812–820 Archer ED, Allen RWK, Maclnnes JM (2000) Measurements of VOC take-up by adsorbing particles in a gas stream. Filtr Sep 33:33–39 Chiang YC, Chiang PC, Huang CP (2001) Effects of pore structure and temperature on VOC adsorption on activated carbon. Carbon 39(4):523–534 Jang DS, Jetli R, Acharya S (1986) Comparison of the PISO, SIMPLER and SIMPLEC algorithms for the treatment of the pressure-velocity coupling in steady flow problems. Numer Heat Transf 10(3):209–228 Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Computer methods in applied. Comput Methods Appl Mech Engrg 3:269–289 Zhao B, Yang C, Yang X, Liu S (2008) Particle dispersion and deposition in ventilated rooms: testing and evaluation of different Eulerian and Lagrangian models. Build Environ 43:388–397 Elghobashi S (1994) On predicting particle-laden turbulent flows. Appl Sci Res 52:309–329 Zhang Z, Chen Q (2004) Numerical analysis of particle behaviors in indoor air using Lagrangian method. Roomvent Proceedings, Coimbra Li YQ (2008) Construction of diffusion equation in the process of engendering dust in selecting coal factory. J Beijing Polytech Coll 7(1):84–89 Deng BQ, Kim CN (2004) A new CFD model for VOC emission based on the general adsorption isotherm. JSME Int J Ser B 47:396–402 Shin DM, Kim CN, Kim DS (2003) Emission characteristics of volatile organic compounds (VOCs) from a carpet. J SAREK 15:40–49 Little JC, Hodgson AT, Gadgil AJ (1994) Modeling emissions of volatile organic compounds from new carpets. Atmos Environ 28:227–234 Charles JW, William WN (2010) SVOC partitioning between the gas phase and settled dust indoors. Atmos Environ 44:3609–3620 Zhao B, Wu J (2007) Particle deposition in indoor environments: analysis of influencing factors. J Hazard Mater 147:439–448 Murakami S, Kato S, Kondo Y, Ito K, Yamamoto A (2000) VOC distribution in a room based on CFD simulation coupled with emission/sorption analysis. In: Proceeding of the 7th international conference on air distribution in rooms reading. 1:473–478