Nghiên cứu số về sự di chuyển của nước trong hệ thống đất sét giãn nở chưa bão hòa kín

Qiuyan Liu1, Mingwu Wang2
1School of Management Science and Engineering, Anhui University of Finance & Economics, Bengbu, China
2School of Civil and Hydraulic Engineering, Hefei University of Technology, Hefei, China

Tóm tắt

Đất sét giãn nở có nhiều vết rạn nứt và dễ xuống cấp khi độ ẩm thay đổi. Để đảm bảo an toàn cho các công trình xây dựng bằng đất được đặt trên đất sét giãn nở ở khu vực nửa khô, những tác động của sự di chuyển nước mạnh đã nhận được nhiều sự chú ý, bên cạnh hiện tượng ấm lên toàn cầu và biến đổi khí hậu. Trong nghiên cứu này, sự di chuyển nước đã được phân tích từ góc độ của phương trình khuếch tán bất thường, và phương trình di chuyển hơi - lỏng phân số theo thời gian trong đất sét chưa bão hòa một chiều đã được thảo luận dựa trên vi phân phân số của Caputo và vi phân tương thích. Tính hợp lệ của mô hình cũng đã được xác minh bằng dữ liệu đo được từ các thí nghiệm di chuyển dưới nhiều nhiệt độ và độ dốc nước khác nhau trong một hệ thống kín. Độ nhạy của bậc phân số cũng được phân tích thêm. Kết quả cho thấy mô hình di chuyển nước theo bậc phân số có thể mô tả tốt quá trình di chuyển nước trong đất sét chưa bão hòa. Sai số của nó khoảng 30% so với mô hình bậc nguyên. Mô hình được trình bày có thể hỗ trợ nghiên cứu quy luật di chuyển nước trong đất sét giãn nở chưa bão hòa.

Từ khóa

#di chuyển nước #đất sét giãn nở #mô hình phân số #ấm lên toàn cầu #biến đổi khí hậu

Tài liệu tham khảo

An N, Hemmati S, Cui YJ, Tang CS (2018) Numerical investigation of water evaporation from Fontainebleau sand in an environmental chamber. Eng Geol 234:55–64. https://doi.org/10.1016/j.enggeo.2018.01.005 Anderson DR, Ulness DJ (2015) Properties of the Katugampola fractional derivative with potential application in quantum mechanics. J Math Phys 56(6):1–15. https://doi.org/10.1063/1.4922018 Avci D, Eroglu BBI, Ozdemir N (2017) The Dirichlet problem of a conformable advection-diffusion equation. Therm Sci 1(1):9–18. https://doi.org/10.2298/TSCI160421235A Benkhettou N, Hassani S, Torres DFM (2016) A conformable fractional calculus on arbitrary time scales. J King Saud Univ Sci 28(1):93–98. https://doi.org/10.1016/j.jksus.2015.05.003 Cai GH, Lu HJ, Liu SY (2017) Moisture-heat migration laws and permeability of compacted clay under temperature gradient. Journal of Northeastern University(Natural Science) 38(6):874–879. (in Chinese) Cao C, Yin D, Xiang G, Guo H, Chen Y (2020) Study on horizontal diffusion of agent solutions in underground unsaturated soil: experiments and model simulations. Environ Eng Res 26(3): 200119. https://doi.org/10.4491/eer.2020.119 Celia MA, Boulotas ET, Zarba RL (1990) A general mass conservative numerical solution for the unsaturated flow equation. Water Resour Res 26(7):1483–1496. https://doi.org/10.1029/WR026i007p01483 Cenesiz Y, Kurt A, Nane E (2017) Stochastic solutions of conformable fractional Cauchy problems. Stat Probabil Lett 124:126–131. https://doi.org/10.1016/j.spl.2017.01.012 Chang FX, Chen J, Huang W (2005) Anomalous diffusion and fractional convective-diffusion equations. Acta Physica Sinica 54(3):1113–1117. https://doi.org/10.3321/j.issn:1000-3290.2005.03.020. (in Chinense) Chanzy A, Bruckler L (1993) Signification of soil surface moisture with respect to daily bare soil evaporation. Water Resour Res 29(4):1113–1125. https://doi.org/10.1029/92WR02747 Chen J, Williams K, Chen W, Shen JH, Ye FP (2020) A review of moisture migration in bulk material. Particul Sci Technol 38(2):247–260. https://doi.org/10.1080/02726351.2018.1504152 Chen PP, Bai B (2015) Numerical simulation of moisture-heat coupling in porous media with circular heat source by SPH method. Chin J Geotech Eng 37(6):1025–1030. (in Chinese) Chung WS (2015) Fractional Newton mechanics with conformable fractional derivative. J Comput Appl Math 290:150–158. https://doi.org/10.1016/j.cam.2015.04.049 Freitas AA, Vigo DA, Teixeira MG, Vasconcellos CD (2017) Horizontal water flow in unsaturated porous media using fractional integral method with adaptive time step. Appl Math Model 48:584–592. https://doi.org/10.1016/j.apm.2017.03.032 Gerolymatou E, Vardoulakis I, Hilfer R (2006) Modelling infiltration by means of a nonlinear fractional diffusion model. J Phys d: Appl Phys 39:4104–4110. https://doi.org/10.1088/0022-3727/39/18/022 Grifoll J, Gastó JM, Cohen Y (2005) Non-isothermal soil water transport and evaporation. Adv Water Resour 28(11):1254–1266. https://doi.org/10.1016/j.advwatres.2005.04.008 He ZY, Zhang S, Teng JD, Yao YP, Sheng DC (2018) A coupled model for liquid water-vapor-heat migration in freezing soils. Cold Reg Sci Technol 148:22–28. https://doi.org/10.1016/j.coldregions.2018.01.003 He J, Hao GW (2007) Relationship between hydraulic conductivity and diffusion coefficient of clay liner. Coal Geology and Exploration 35(6):40–43. https://doi.org/10.3969/j.issn.1001-1986.2007.06.010. (in Chinese) Iyiola OS, Tasbozan O, Kurt A, Cenesiz Y (2017) On the analytical solutions of the system of conformable time-fractional Robertson equations with 1-D diffusion. Chaos Soliton Fract 94:1–7. https://doi.org/10.1016/j.chaos.2016.11.003 Khalil R, Al Horani M, Yousef A, Sababheh M (2014) A new definition of fractional derivative. J Comput Appl Math 264:65–70. https://doi.org/10.1016/j.cam.2014.01.002 Liu QY, Wang MW, Wu DG, Shen FQ (2021) A computational model of water migration in a closed system of unsaturated expansive clay. KSCE J Civ Eng 25(11):4221–4230. https://doi.org/10.1007/s12205-021-0353-x Mainardi F (2018) A note on the equivalence of fractional relaxation equations to differential equations with varying coefficients. Mathematics 6:8–12. https://doi.org/10.3390/math6010008 Mascarenhas PVS, Cavalcante ALB (2022) Stochastic foundation to solving transient unsaturated flow problems using a fractional dispersion term. Int J Geomech 22(1):04021262. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002251 Milly PCD (1984) A simulation analysis of thermal effects on evaporation from soil. Water Resour Res 20(8):1087–1098 Mon EE, Hamamoto S, Kawamoto K, Komatsu T, Moldrup P (2016) Temperature effects on solute diffusion and adsorption in differently compacted kaolin clay. Environ Earth Sci 75(7):562. https://doi.org/10.1007/s12665-016-5358-2 Pachepskya Y, Timlinb D, Rawlsc W (2003) Generalized Richards’ equation to simulate water transport in unsaturated soils. J Hydrol 272(1–4):3–13. https://doi.org/10.1016/S0022-1694(02)00251-2 Paul A, Laurila T, Vuorinen V, Divinski SV (2014) Thermodynamics, diffusion and the Kirkendall effect in solids. Springer International Publishing, Switzerland, pp 115–139 Qian Z, Yu B, Wang S, Luo L (2012) A diffusivity model for gas diffusion through fractal porous media. Chem Eng Sci 68(1):650–655. https://doi.org/10.1016/j.ces.2011.10.031 Richards LA (1931) Capillary conduction of liquids through porous mediums. J Appl Phys 1(5):318–333. https://doi.org/10.1063/1.1745010 Shen LH, Chen ZX (2007) Critical review of the impact of tortuosity on diffusion. Chem Eng Sci 62(14):3748–3755. https://doi.org/10.1016/j.ces.2007.03.041 Sophocleous MA (1979) Analysis of water and heat flow in unsaturated-saturated porous media. Water Resour Res 15(5):1195–1206. https://doi.org/10.1029/wr015i005p01195 Su NH (2017) Exact and approximate solutions of fractional partial differential equations for water movement in soils. Hydrology 4(1):8. https://doi.org/10.3390/hydrology4010008 Sun HG, Chen W, Chen YQ (2009) Variable-order fractional differential operators in anomalous diffusion modeling. Phys A 388(21):4586–4592. https://doi.org/10.1016/j.physa.2009.07.024 Taylor SA, Cary JW (1964) Linear equations for the simultaneous flow of matter and energy in a continuous soil system. Soil Sci Soc Am J 28(2):167–172. https://doi.org/10.2136/sssaj1964.03615995002800020013x Wang CJ, Zhang S, Xu JL (2021) Fractal model of effective gas diffusion coefficient based on permeability correction factor. Lithologic Reservoirs 33(3):162–168. (in Chinese) Wang R, Zhou HW, Zhuo Z, Xue DJ, Yang S (2020) Finite difference method for space-fractional seepage process in unsaturated soil. Chin J Geotech Eng 42(9):1759–1764. (in Chinese) Wang TX, Zhao SD (2003) Equation for water vapour transfer in unsaturated soil. China J Highw and Transpo 16(2):18–21. (in Chinese) Wilson GW, Fredlund DG, Barbour SL (1994) Coupled soil-atmosphere modeling for soil evaporation. Can Geotech J 31(2):151–161. https://doi.org/10.1139/t94-021 Yu BM (2005) Fractal character for tortuous streamtubes in porous media. Chin Phys Lett 22(1):158–160. https://doi.org/10.1088/0256-307X/22/1/045 Yuan SY, Liu XF, Sloan SW, Buzzi OP (2016) Multi-scale characterization of swelling behaviour of compacted maryland clay. Acta Geotech 11(4):789–804. https://doi.org/10.1007/s11440-016-0457-5 Zhai Q, Rahardjo H, Satyanaga A (2019) Estimation of air permeability function from soil-water characteristic curve. Can Geotech J 56(4):505–513. https://doi.org/10.1139/cgj-2017-0579 Zhai Q, Ye WM, Rahardjo H, Satyanaga A, Dai GL, Zhao XL (2021) Theoretical method for the estimation of vapour conductivity for unsaturated soil. Eng Geol 295: 106447. https://doi.org/10.1016/j.enggeo.2021.106447 Zhou HW, Yang S, Zhang SQ (2018) Conformable derivative approach to anomalous diffusion. Physica A 491:1001–1013. https://doi.org/10.1016/j.physa.2017.09.101