Numerical investigation of basic oxygen furnace slag modification with gas bottom-blowing and SiO2 modifier

Springer Science and Business Media LLC - Tập 30 - Trang 1451-1460 - 2023
Chang Liu1,2,3, Yu-feng Tian1,2, Yong-li Xiao4, Yong-qian Li4, Yang Li1,2, Guang-qiang Li1,2, Qiang Wang1,2
1The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
2Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education, Wuhan University of Science and Technology, Wuhan, China
3Ruipu Technology Group Co., Ltd., Lishui, China
4Central Research Institute, Baoshan Iron & Steel Co., Ltd., Shanghai, China

Tóm tắt

To avoid the volume expansion of basic oxygen furnace (BOF) slag for use in building materials, a hot slag modification process was proposed to reduce free CaO (f-CaO) in the molten slag. A transient 3D numerical model of BOF molten slag modification by SiO2 particles was established. The flow and heat transfer of molten slag, movement and dissolution of the modifier, and concentration distribution of f-CaO in slag during the modification of BOF were studied. The distribution of f-CaO concentration is inhomogeneous all over the molten slag. The mixing effect at the slag surface is weaker than that at the half-height plane of the slag. To consume the f-CaO below 2.0 wt.% in the slag, the optimum quantity of the SiO2 modifier is 10.0% of the mass of the slag. The fine SiO2 particles help attain a lower final mass fraction of f-CaO and a higher SiO2 utilization ratio.

Tài liệu tham khảo

N. Sharma, V.N. Nurni, V. Tathavadkar, S. Basu, Miner. Process. Extr. Metall. 126 (2017) 54–61. R. Xiang, P. Chen, R. Liu, C. Hu, D. Wan, J. Fan, J. Wei, Crystals 11 (2021) 1051. K. Fukuda, T. Bessho, K.I. Matsunaga, H. Yoshida, Cem. Concr. Res. 34 (2004) 1535–1540. T.C. Alex, G. Mucsi, T. Venugopalan, S. Kumar, J. Sustain. Metall. 7 (2021) 1407–1424. R. N, B. Konar, A. Maity, S. Chatterjee, A. Senguttuvan, K. Chattopadhyay, in: AISTech 2019 - Proceedings of the Iron and Steel Technology Conference, Pittsburgh, USA, 2019, pp. 55–65. Y. Jiang, T.C. Ling, C. Shi, S.Y. Pan, Resour. Conserv. Recycl. 136 (2018) 187–197. Y.H. Tseng, Y.C. Lee, B.L. Sheu, China Steel Tech. Rep. (2015) No. 28, 46–51. J.B.F. Neto, C. Fredericci, J.O.G. Faria, F.F. Chotoli, T.R. Ribeiro, A. Malynowskyj, A.N.L. Silva, V.A. Quarcioni, A.A. Lotto, in: R.G. Reddy, P. Chaubal, P.C. Pistorius, U. Pal (Eds.), Advances in Molten Slags, Fluxes, and Salts: Proceedings of the 10th International Conference on Molten Slags, Fluxes and Salts (MOLTEN2016), Springer, Cham, 2016, pp. 847–854. G. Wang, Y. Wang, Z. Gao, J. Hazard. Mater. 184 (2010) 555–560. P. Xue, A. Xu, D. He, Q. Yang, G. Liu, F. Engström, B. Björkman, Constr. Build. Mater. 122 (2016) 567–576. B. Das, S. Prakash, P.S.R. Reddy, V.N. Misra, Resour. Conserv. Recycl. 50 (2007) 40–57. P.L. Lopez Gonzalez, R.M. Novais, J.A. Labrincha, B. Blanpain, Y. Pontikes, Cem. Concr. Compos. 97 (2019) 143–153. Y. Zhao, P. Sun, P. Chen, X. Guan, Y. Wang, R. Liu, J. Wei, Sustainability 13 (2021) 6536. Y.H. Tseng, T.T. Weng, Y.C. Lee, China Steel Tech. Rep. (2019) No. 32, 39–43. C. Liu, S. Huang, B. Blanpain, M. Guo, Metall. Mater. Trans. B 50 (2019) 210–218. C. Liu, S. Huang, P. Wollants, B. Blanpain, M. Guo, Metall. Mater. Trans. B 48 (2017) 1602–1612. C. Liu, S. Huang, B. Blanpain, M. Guo, Metall. Mater. Trans. B 50 (2019) 271–281. Y. Lin, B. Yan, Y. Wen, Z. Liang, T. Fabritius, Q. Shu, J. Am. Ceram. Soc. 105 (2022) 3774–3785. G. Tripathi, A. Malfliet, B. Blanpain, M. Guo, Metall. Mater. Trans. B 52 (2021) 1614–1625. P. Drissen, A. Ehrenberg, M. Kühn, D. Mudersbach, Steel Res. Int. 80 (2009) 737–745. H. Motz, J. Geiseler, Waste Management Series 1 (2000) 207–220. E. Brandaleze, E. Benavidez, L. Santini, in: Y.Y. Zhang (Eds.), Recovery and Utilization of Metallurgical Solid Waste, IntechOpen, 2018, pp. 1–18. https://doi.org/10.5772/intechopen.80595 P.Y. Mahieux, J.E. Aubert, G. Escadeillas, Constr. Build. Mater. 23 (2009) 742–747. T. Zhang, Q. Yu, J. Wei, J. Li, P. Zhang, Resour. Conserv. Recycl. 56 (2011) 48–55. F.R. Menter, AIAA J. 32 (1994) 1598–1605. Y. Qiu, Z. Liu, X. Chen, C. Zhan, in: 2010 2nd International Conference on Computer Engineering and Technology, ICCET 2010, IEEE, Chengdu, China, 2010, pp. V5-285–V5-288. K.J. Kimunguyi, A numerical investigation of turbulent natural convection in a 3-d enclosure using k-w SST model and piso method, Kenyatta University, Nairobi, Kenya, 2016. H. Towers, M. Paris, J. Chipman, JOM 5 (1953) 1455–1458. Q. Wang, S. Jia, F. Tan, G. Li, D. Ouyang, S. Zhu, W. Sun, Z. He, Metall. Mater. Trans. B 52 (2021) 1085–1094. K. Peng, Y. Sun, X. Peng, W. Chen, L. Zhang, Metall. Mater. Trans. B 54 (2023) 438–449. F. Oeters, P. Strohmenger, W. Pluschkell, Archiv für das Eisenhüttenwesen 44 (1973) 727–733. Y. Zhao, W. Chen, S. Cheng, L. Zhang, Int. J. Miner. Metall. Mater. 29 (2022) 758–766. Y. Xiao, Y. Tian, Q. Wang, G. Li, JOM 73 (2021) 2733–2740. C. Liu, BOF slag hot-stage engineering towards iron recovery and use as binders, KU Leuven, Leuven, Belgium, 2017. Y.L. Wang, S.P. Cui, G.P. Tian, M.Z. Lan, Z.H. Wang, Mater. Sci. Forum 814 (2015) 564–568.