Khảo sát số về các tính năng của dòng nanofluid phản ứng hóa học tỏa nhiệt Powell–Eyring nâng cao qua môi trường Darcy trên bề mặt kéo giãn phi tuyến chịu ảnh hưởng của trường điện từ và điều kiện biên đối lưu

Applied Nanoscience - Tập 13 - Trang 229-246 - 2020
Ghulam Rasool1,2, Anum Shafiq3
1Binjiang College, Nanjing University of Information Science and Technology, Wuxi, China
2School of Mathematical Sciences, Zhejiang University, Hangzhou, China
3Department of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, China

Tóm tắt

Bài báo này mô tả các đặc điểm của MHD, bộ tản nhiệt/nhiệt nguồn và điều kiện biên đối lưu trong dòng nanofluid phản ứng hóa học tỏa nhiệt Powell–Eyring qua kênh Darcy sử dụng bề mặt kéo giãn không tuyến tính. Một thuật ngữ phản ứng hóa học nhị phân được đưa vào mô hình. Phóng xạ phi tuyến được tính toán trong dòng chảy. Mô hình liên quan đến ảnh hưởng của bộ tản nhiệt/nhiệt nguồn. Các điều kiện biên đối lưu được áp dụng. Chuyển động Brown và hiệu ứng Thermophoresis cũng được xem xét. Ảnh hưởng của trường điện từ ngang được tính đến tác động qua một góc nghiêng nhằm nâng cao khả năng dẫn điện của nanofluid. Hơn nữa, giả định Reynolds thấp được đưa ra để loại bỏ sự xuất hiện của từ trường. Phương trình điều khiển lớp biên được lập thành hai biến trong tọa độ Đề-các được chuyển đổi thành các phương trình vi phân thường (ODE) thông qua các phép biến đổi hợp lý. Các nghiệm được thu được một cách số học và được biểu diễn dưới dạng đồ thị cũng như bảng dữ liệu. Hành vi của các profile dòng chảy được giải thích cho các thông số chất lỏng khác nhau. Các kết quả được vẽ cho cả tỷ lệ kéo giãn phi tuyến và tuyến tính của bề mặt. Sự thay đổi trong độ ma sát bề mặt, số Nusselt và số Sherwood được ghi nhận cho cả hai trường hợp kéo giãn tuyến tính và phi tuyến. Kết quả cho thấy yếu tố độ xốp được cải thiện là nguồn chính làm giảm tốc độ chất lỏng và gia tăng lực kéo. Hơn nữa, sự tham gia của yếu tố bức xạ làm cải thiện đáng kể phân bố nhiệt độ. Các kết quả thu được tại đây hữu ích trong các ứng dụng công nghiệp của nanofluids, đặc biệt trong việc thiết kế thiết bị gia nhiệt, thiết bị propulsor, tuabin khí, nhà máy hạt nhân, phương tiện kiểu không gian, vệ tinh và nhiều lĩnh vực khác.

Từ khóa

#nanofluid #Powell–Eyring #phản ứng hóa học #tản nhiệt #MHD #trường điện từ #điều kiện biên đối lưu

Tài liệu tham khảo

Animasaun IL, Raju CSK, Sandeep N (2016) Unequal diffusivities case of homogeneous heterogeneous reactions within viscoelastic fluid flow in the presence of induced magnetic-field and nonlinear thermal radiation. Alex Eng J. https://doi.org/10.1016/j.aej.2016.01.018 Animasaun IL, Ibraheem RO, Mahanthesh B, Babatunde HA (2019) A meta-analysis on the effects of haphazard motion of tiny/nano-sized particles on the dynamics and other physical properties of some fluids. Chin J Phys 60:676–687 Chamkha AJ, Ismael M, Kasaeipoor A, Armaghani T (2016) Entropy generation and natural convection of CuO-water nanofluid in C-shaped cavity under magnetic field. Entropy 18:50 Chen CH (2010) On the analytic solution of MHD flow and heat transfer for two types of viscoelastic fluid over a stretching sheet with energy dissipation, internal heat source and thermal radiation. Int J Heat Mass Transf 53:4264–4273 Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles, USA, ASME, FED 231/MD, 66, 99–105 Cortell R (2013) Fluid flow and radiative nonlinear heat transfer over stretching sheet. J King Saud Univ Sci 26:161–167 Dinarvand S, Doosthoseini A, Doosthoseini E, Rashidi MM (2010) Series solutions for unsteady laminar MHD flow near forward stagnation point of an impulsively rotating and translating sphere in presence of buoyancy forces. Nonlinear Anal Real World Appl 11:1159–1169 Farhan M, Omar Z, Mebarek-Oudina F, Raza J, Shah Z, Choudhari RV, Makinde OD (2020) Implementation of one Step one Hybrid Block Method on nonlinear equation of the circular sector oscillator. Comput Math Model 31(01):116–132 Guo C, Hu M, Li Z, Duan F, He L, Zhang Z, Du M (2020) Structural hybridization of bimetallic zeolitic imidazolate framework (ZIF) nanosheets and carbon nanofibers for efficiently sensing \(\alpha\)-synuclein oligomers. Sens ActuatB, Chem 309:127821 Hamrelaine S, Mebarek-Oudina F, Sari MR (2019) Analysis of MHD Jeffery Hamel flow with suction/injection by homotopy analysis method. J Adv Res Fluid Mech Therm Sci 58(02):173–186 Hayat T, Asad S, Mustafa M, Alsaedi A (2014) Radiation effects on the flow of Powell–Eyring fluid past an unsteady inclined stretching sheet with non-uniform heat source/sink. PLoS One 9:e103214 Hayat T, Imtiaz M, Alsaedi A, Kutbi MA (2015) MHD three-dimensional flow of nanofluid with velocity slip and nonlinear thermal radiation. J Magn Magn Mater 396:31–37 Hayat T, Imtiaz M, Alsaedi A (2015) Effects of homogeneous-heterogeneous reactions in flow of Powell–Eyring fluid. J Cent South Univ 22:3211–3216 Hayat T, Qayyum S, Alsaedi A, Shafiq A (2016) Inclined magnetic field and heat source/sink aspects in flow of nanofluid with nonlinear thermal radiation. Int J Heat Mass Trans 103:99–107 Hayat T, Hussain S, Muhammad T, Alsaedi A, Ayub M (2017) Radiative flow of Powell–Eyring nanofluid with convective boundary conditions. Chin J Phys Taipei 55(4):1523–1538 Hsiao KL (2016) Stagnation electrical MHD nanofluid mixed convection with slip boundary on a stretching sheet. Appl Therm Eng 98:850–861 Jalil M, Asghar S, Imran SM (2013) Self similar solutions for the flow and heat transfer of Powell–Eyring fluid over a moving surface in a parallel free stream. Int J Heat Mass Transf 65:73–79 Khan U, Zaib A, Mebarek-Oudina F (2020) Mixed convective magneto flow of SiO2-MoS2/C2H6O2 hybrid nanoliquids through a vertical stretching/shrinking wedge: Stability analysis. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04680-7 Liu C, Huang X, Wu Y, Deng X, Liu J, Zheng Z, Hui D (2020) Review on the research progress of cement-based and geopolymer materials modified by graphene and graphene oxide. Nanotechnol Rev (Berlin) 9(1):155–169 Lund LA, Omar Z, Khan I, Dero S (2019) Multiple solutions of \(Cu-C_6 H_9 NaO_7\) and \(Ag-C_6 H_9 NaO_7\) nanofluids flow over nonlinear shrinking surface. J Cent South Univ 26(5):1283–1293 Lund LA, Omar Z, Khan I, Raza J, Bakouri M, Tlili I (2019) Stability analysis of Darcy-Forchheimer flow of casson type nanofluid over an exponential sheet: investigation of critical points. Symmetry 11:412 Marzougui S, Mebarek-Oudina F, Aissa A, Magherbi M, Shah Z, Ramesh K (2020) Entropy generation on magneto-convective flow of copper-water nanofluid in a cavity with chamfers. J Therm Anal Calorim. https://doi.org/10.1007/s10973-020-09662-3 Mebarek-Oudina F (2017) Numerical modeling of the hydrodynamic stability in vertical annulus with heat source of different lengths. Eng Sci Technol 20(4):1324–1333 Mebarek-Oudina F, Aissa A, Mahanthesh B, Oztop HF (2020) Heat Transport of Magnetized Newtonian Nanoliquids in an Annular Space between Porous Vertical Cylinders with Discrete Heat Source. Int Commun Heat Mass Trans 117:104737 Mukhopadhyay S, Vajravelu K (2012) Effects of transpiration and internal heat generation/absorption on the unsteady flow of a Maxwell fluid at a stretching surface. J Appl Mech 79:044508 Mushtaq A, Mustafa M, Hayat T, Rahi M, Alsaedi A (2013) Exponentially stretching sheet in a Powell–Eyring fluid: numerical and series solutions. Z Naturforsch A 68a:791–798 Nandy SK, Mahapatra TR (2013) Effects of slip and heat generation/absorption on MHD stagnation flow of nanofluid past a stretching/shrinking surface with convective boundary conditions. Int J Heat Mass Transf 64:1091–1100 Parsa AB, Rashidi MM, Hayat T (2013) MHD boundary-layer flow over a stretching surface with internal heat generation or absorption. Heat Trans Asian Res 42:500–514 Parvin S, Chamkha AJ (2014) An analysis on free convection flow, heat transfer and entropy generation in an odd-shaped cavity filled with nanofluid. Int Commun Heat Mass Trans 54:8–17 Pavithra GM, Gireesha BJ (2013) Effect of internal heat generation/absorption on Dusty fluid flow over an exponentially stretching sheet with viscous dissipation. J Math 2013:583615 Poonia M, Bhargava R (2014) Finite element study of Eyring–Powell fluid flow with convective boundary conditions. J Thermophys Heat Transf 28:499–506 Powell RE, Eyring H (1944) Mechanism for relaxation theory of viscosity. Nature 154:427–428 Rasool G, Zhang T (2019a) Darcy-Forchheimer nanofluidic flow manifested with Cattaneo-Christov theory of heat and mass flux over non-linearly stretching surface. PLoS One 14(8):e0221302 Rasool G, Zhang T (2019b) Characteristics of chemical reaction and convective boundary conditions in Powell–Eyring nanofluid flow along a radiative Riga plate. Heliyon 5:e01479 Rasool G, Shafiq A, Khalique CM, Zhang T (2019) Magnetohydrodynamic Darcy Forchheimer nanofluid flow over nonlinear stretching sheet. Phys Scr 94(10):105221 Rasool G, Zhang T, Shafiq A (2019a) Marangoni effect in second grade forced convective flow of water based nanofluid. J Adv Nanotechnol 1(1):50–61 Rasool G, Zhang T, Shafiq A (2019b) Second grade nanofluidic flow past a convectively heated vertical Riga plate. Phys Scr 94(12):125212 Rasool G, Shafiq A, Tlili I (2019) Marangoni convective nano-fluid flow over an electromagnetic actuator in the presence of first order chemical reaction. Heat Transf Asian Res 49:274–289 Rasool G, Zhang T, Chamkha AJ, Shafiq A, Tlili I, Shahzadi G (2020) Entropy generation and consequences of binary chemical reaction on MHD Darcy-Forchheimer Williamson nanofluid flow over non-linearly stretching surface. Entropy 22:18 Raza J, Mebarek-Oudina F, Ram P, Sharma S (2020) MHD flow of non-Newtonian molybdenum disulfide nanofluid in a converging/diverging channel with Rosseland radiation. Defect Diffus Forum 401:92–106 Reddy S, Chamkha AJ (2016) Soret and dufour effects on mhd convective flow of \(Al_2O_3\)-Water and \(TiO_2\)-water nanofluids past a stretching sheet in porous media with heat generation/absorption. Adv Powder Technol 27:1207–1218 Sandeep N, Sulochana C, Kumar BR (2016) Unsteady MHD radiative flow and heat transfer of a dusty nanofluid over an exponentially stretching surface. Eng Sci Technol 19:227–240 Shehzad SA, Hayat T, Alsaedi A, Obid MA (2014) Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid: a model for solar energy. Appl Math Comput 248:273–286 Sheikh M, Abass Z (2015) Effects of thermophoresis and heat generation/absorption on MHD flow due to an oscillatory stretching sheet with chemically reactive species. J Magn Magn Mater 396:204–213 Sheikholeslami M, Mustafa MT, Ganji DD (2016) Effect of Lorentz Forces on Forced-Convection Nanofluid Flow Over a Stretched Surface. Particuology. https://doi.org/10.1016/j.partic.2014.09.004 Sheikholeslami M, Shah Z, Shafee A, Khan I, Tlili I (2019) Uniform magnetic force impact on water based nanofluid thermal behavior in a porous enclosure with ellipse shaped obstacle. Sci Rep 9:1196 Sheikholeslami M, Farshad SA, Shafee A, Babazadeh H (2021) Performance of solar collector with turbulator involving nanomaterial turbulent regime. Renew Energy 163:1222–1237 Wakif A (2020) A novel numerical procedure for simulating steady MHD convective flows of radiative Casson fluids over a horizontal stretching sheet with irregular geometry under the combined influence of temperature-dependent viscosity and thermal conductivity. Math Prob Eng 2020:1675350 Wakif A, Boulahia Z, Sehaqui R (2017a) Numerical study of the onset of convection in a Newtonian Nanofluid layer with spatially uniform and Non-uniform internal heating. J Nanofluids 6(1):136–148 Wakif A, Boulahia Z, Sehaqui R (2017b) Numerical analysis of the onset of longitudinal convective rolls in a porous medium saturated by an electrically conducting nanofluid in the presence of an external magnetic field. Results Phys 7:2134–2152 Wakif A, Boulahia Z, Ali F et al (2018) Numerical analysis of the unsteady natural convection MHD couette nanofluid flow in the presence of thermal radiation using single and two-phase nanofluid models for Cu-water nanofluids. Int J Appl Comput Math 4:81 Wakif A, Boulahia Z, Sehaqui R (2018) A semi-analytical analysis of electro-thermo-hydrodynamic stability in dielectric nanofluids using Buongiorno’s mathematical model together with more realistic boundary conditions. Results Phys 9:1438–1454 Wakif A, Boulahia Z, Mishra SR, Rashidi MM, Sehaqui R (2018) Influence of a uniform transverse magnetic field on the thermo-hydrodynamic stability in water-based nanofluids with metallic nanoparticles using the generalized Buongiorno’s mathematical model. Eur Phys J Plus 133:181 Wakif A, Animasaun IL, Satya Narayana PV, Sarojamma G (2020) Meta-analysis on thermo-migration of tiny/nano-sized particles in the motion of various fluids. Chin J Phys 68:293–307 Wang G, Yao Y, Chen Z, Hu P (2019) Thermodynamic and optical analyses of a hybrid solar CPV/T system with high solar concentrating uniformity based on spectral beam splitting technology. Energy 166:256–266 Yan H, Xue X, Chen W, Wu X, Dong J, Liu Y, Wang Z (2020) Reversible Na+ insertion/extraction in conductive polypyrrole-decorated \(NaTi_2(PO_4)_3\) nanocomposite with outstanding electrochemical property. Appl Surf Sci 530:147295 Yu H, Dai W, Qian G, Gong X, Zhou D, Li X, Zhou X (2020) The NOx degradation performance of nano-TiO2 coating for asphalt pavement. Nanomaterials (Basel, Switzerland) 10(5):897 Zaraki A, Ghalambaz M, Chamkha AJ, Rossi DD (2015) Theoretical analysis of natural convection boundary layer heat and mass transfer of nanofluids: effects of size, shape and type of nanoparticles, type of base fluid and working temperature. Adv Powder Technol 26:935–946 Zeeshan A, Majeed A, Ellahi R (2016) Effect of magnetic dipole on viscous Ferro-fluid past a stretching surface with thermal radiation. J Mol Liq 215:549–554 Ziaei-Rad M, Saeedan M, Afshari E (2016) Simulation and prediction of MHD dissipative nanofluid flow on a permeable stretching surface using artificial neural network. Appl Therm Eng 99:373–382