Tính toán số và phân tích phần tử hữu hạn cho tính chất đàn hồi không đồng nhất của sợi carbon: sự phụ thuộc của khoảng tích phân và kích thước lưới vào mô đun đàn hồi thu được từ thí nghiệm đè nén
Tóm tắt
Từ khóa
Tài liệu tham khảo
Pantelakis S (2020) Historical development of aeronautical materials. In: Pantelkis S, Tserpes K (eds) Revolutionizing aircraft materials and processes. Springer, Cham, pp 1–20
Wang H, Zhang H, Goto K, Watanabe I, Kitazawa H, Kawai M, Mamiya H, Fujita D (2020) Stress mapping reveals extrinsic toughening of brittle carbon fiber in polymer matrix. Sci Technol Adv Mater 21(1):267–277. https://doi.org/10.1080/14686996.2020.1752114
Guimard JM, Allix O, Pechnik N, Thevenet P (2009) Energetic analysis of fragmentation mechanisms and dynamic delamination modelling in CFRP composites. Comput Struct 87(15–16):1022–1032. https://doi.org/10.1016/j.compstruc.2008.04.021
Naito K, Tanaka Y, Yang JM, Kagawa Y (2008) Tensile properties of ultrahigh strength PAN-based, ultrahigh modulus pitch-based and high ductility pitch-based carbon fibers. Carbon 46(2):189–195. https://doi.org/10.1016/j.carbon.2007.11.001
Naito K, Tanaka Y, Yang JM, Kagawa Y (2009) Flexural properties of PAN- and pitch-based carbon fibers. J Am Ceram Soc 92(1):186–192. https://doi.org/10.1111/j.1551-2916.2008.02868.x
Naito K, Tanaka Y, Yang JM (2017) Transverse compressive properties of polyacrylonitrile (PAN)-based and pitch-based single carbon fibers. Carbon 118:168–183. https://doi.org/10.1016/j.carbon.2017.03.031
Naito K (2018) Stress analysis and fracture toughness of notched polyacrylonitrile (PAN)-based and pitch-based single carbon fibers. Carbon 126:346–359. https://doi.org/10.1016/j.carbon.2017.10.021
Shirasu K, Goto K, Naito K (2020) Microstructure-elastic property relationships in carbon fibers: a nanoindentation study. Compos B 200:108342. https://doi.org/10.1016/j.compositesb.2020.108342
Datta S, Ledbetter H, Kyono T (1989) Graphite-fiber elastic constants: determination from ultrasonic measurements on composite materials. In: Thompson DO, Chimenti DE (eds) Review of progress in quantitative nondestructive evaluation, vol 8. Springer, Boston, pp 1481–1488
Eumelen GJAM, Suiker ASJ, Bosco E, Fleck NA (2022) Analytical model for elasto-plastic indentation of a hemispherical surface inclusion. Int J Mech Sci 224:107267. https://doi.org/10.1016/j.ijmecsci.2022.107267
Ginder R, Nix W, Pharr G (2018) A simple model for indentation creep. J Mech Phys Solids 112:552–562. https://doi.org/10.1016/j.jmps.2018.01.001
Man T, Ohmura T, Tomota Y (2019) Mechanical behavior of individual retained austenite grains in high carbon quenched-tempered steel. ISIJ Int 59(3):559–566. https://doi.org/10.2355/isijinternational.ISIJINT-2018-620
Kanari M, Tanaka K, Baba S, Eto M (1997) Nanoindentation behavior of a two-dimensional carbon–carbon composite for nuclear applications. Carbon 35(10–11):1429–1437. https://doi.org/10.1016/S0008-6223(97)00042-0
Oliver W, Pharr G (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583. https://doi.org/10.1557/JMR.1992.1564
Delafargue A, Ulm FJ (2004) Explicit approximations of the indentation modulus of elastically orthotropic solids for conical indenters. Int J Solids Struct 41:7351–7360. https://doi.org/10.1016/j.ijsolstr.2004.06.019
Csanádi T, Németh D, Zhang C, Dusza J (2017) Nanoindentation derived elastic constants of carbon fibres and their nanostructural based predictions. Carbon 119:314–325. https://doi.org/10.1016/j.carbon.2017.04.048
Vlassak J, Nix W (1997) Measuring the elastic properties of anisotropic materials by means of indentation experiments. J Mech Phys Solids 42(8):1223–1245. https://doi.org/10.1016/0022-5096(94)90033-7
Swadener J, Pharr G (2001) Indentation of elastically anisotropic half-spaces by cones and parabolae of revolution. Philos Mag A 81(2):447–466. https://doi.org/10.1080/01418610108214314
Dub SN, Haftaoglu C, Kindrachuk VM (2021) Estimate of theoretical shear strength of C60 single crystal by nanoindentation. J Mater Sci 56:10905–10914. https://doi.org/10.1007/s10853-021-05991-2
Nguyen PTN, Abbès F, Lecomte JS, Schuman C, Abbès B (2022) Inverse identification of single-crystal plasticity parameters of HCP zinc from nanoindentation curves and residual topographies. Nanomaterials 12(3):300. https://doi.org/10.3390/nano12030300
Wang H, Zhang H, Tang D, Goto K, Watanabe I, Kitazawa H, Kawai M, Mamiya H, Fujita D (2019) Stress dependence of indentation modulus for carbon fiber in polymer composite. Sci Technol Adv Mater 20(1):412–420. https://doi.org/10.1080/14686996.2019.1600202
Gonabadi H, Oila A, Yadav A, Bull S (2022) Investigation of the effects of environment fatigue on the mechanical properties of GFRP composite constituents using nanoindentation. Exp Mech 62:585–602. https://doi.org/10.1007/s11340-021-00808-4
Leavy R, Brannon R, Strack O (2010) The use of sphere indentation experiments to characterize ceramic damage models. Int J Appl Ceram Technol 7(5):606–615. https://doi.org/10.1111/j.1744-7402.2010.02487.x
Asada T, Ohno N, Tanaka Y (2008) Flat punch indentation analysis of honeycomb structures using implicit homogenization scheme. In: Advances in heterogeneous material mechanics (ICHMM-2008), Proceedings of the second international conference on heterogeneous material mechanics. Huangshan, 3–8 June 2008. pp 824–828
Belytschko T, Ong J, Liu W, Kennedy J (1984) Hourglass control in linear and nonlinear problems. Comput Methods Appl Mech Eng 43:251–276. https://doi.org/10.1016/0045-7825(84)90067-7