Numerical assessment of a horizontal axis marine current turbine performance
Tài liệu tham khảo
S. Behrens, D. Griffin, J. Hayward, M. Hemer, C. Knight, S. McGarry, P. Osman, and J. Wright, Ocean renewable energy: 2015–2050, an analysis of ocean energy in Australia.www.csiro.au, 2012.
IEA, International Energy Agency Key World Energy Statistics, 2016.
Seng, 2009
Batten, 2008, The prediction of the hydrodynamic performance of marine current turbines, Renewable Energy, 33, 1085, 10.1016/j.renene.2007.05.043
Wu, 2012, On design and performance prediction of the horizontal-axis water turbine, Ocean Eng., 50, 23, 10.1016/j.oceaneng.2012.04.003
Baltazar, 2011, Hydrodynamic analysis of a horizontal axis marine current turbine with a boundary element method, J. Offshore Mech. Arctic Eng., 133, 041304, 10.1115/1.4003387
Hall, 2012
M.J. Lawson, Y. Li, D.C. Sale, Development and verification of a computational fluid dynamics model of a horizontal-axis tidal current turbine, in: ASME 2011 30th International Conference on Ocean, Offshore and Arctic Engineering, Available, 2011, pp. 711–720.
Noruzi, 2015, Design, analysis and predicting hydrokinetic performance of a horizontal marine current axial turbine by consideration of turbine installation depth, Ocean Eng., 108, 789, 10.1016/j.oceaneng.2015.08.056
Make, 2015, Analyzing scaling effects on offshore wind turbines using CFD, Renewable Energy, 83, 1326, 10.1016/j.renene.2015.05.048
Giahi, 2016, Investigating the influence of dimensional scaling on aerodynamic characteristics of wind turbine using CFD simulation, Renewable Energy, 97, 162, 10.1016/j.renene.2016.05.059
Xu, 2010
Bai, 2014, Numerical simulation of a marine current turbine in free surface flow, Renewable Energy, 63, 715, 10.1016/j.renene.2013.09.042
Shi, 2013, Flow separation impacts on the hydrodynamic performance analysis of a marine current turbine using CFD, Proc. Inst. Mech. Eng. Part A, 227, 833, 10.1177/0957650913499749
B. Gunawan, C. Michelen, V.S. Neary, R.G. Coe, E. Johnson, A. Fontaine, R.S. Meyer, W. Straka, M. Jonson, Model validation using experimental measurements from the garfield thomas water tunnel at the applied research laboratory (arl) at penn state university, 2014.
Lust, 2013, The influence of surface gravity waves on marine current turbine performance, Int. J. Marine Energy, 3–4, 27, 10.1016/j.ijome.2013.11.003
M. Drela, H. Youngren. XFoil 6.96. http://web.mit.edu/drela/Public/web/xfoil/;, 2006.
Menter, 2011
Menter, 1994, Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 1598, 10.2514/3.12149
Menter, 2012, Explicit algebraic Reynolds stress models for anisotropic wall-bounded flows, Progr. Flight Phys., 3, 89, 10.1051/eucass/201203089
Wallin, 2000, An explicit algebraic Reynolds stress model for incompressible and compressible turbulent flows, J. Fluid Mech., 403, 89, 10.1017/S0022112099007004
J. M. Blanco, Investigation of turbine interactions in a tidal device, 2009.
C. Ansys, Release 15.0, CFX-Solver theory guide, 2013, Technical report, Ansys.
ANSYS, ANSYS CFX-Solver Modeling Guide, 2013: 275 Technology Drive, Canonsburg PA 15317.
Rhie, 1982, Numerical study of the flow past an isolated airfoil with separation, Dissertation Abstracts International Part B: Science and Engineering [Diss. Abst. Int. PT. B- Sci. & Eng.], 42
Slater, 2006
Walker, 2014, Experimental and numerical studies of blade roughness and fouling on marine current turbine performance, Renewable Energy, 66, 257, 10.1016/j.renene.2013.12.012
W. Otto, D. Rijpkema, G. Vaz, Viscous-flow calculations on an axial marine current turbine, in: ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering, 2012 pp. 369–382.
Liu, 2016, Wake field studies of tidal current turbines with different numerical methods, Ocean Eng., 117, 383, 10.1016/j.oceaneng.2016.03.061