Numerical aspects of hydro-mechanical coupling of fluid-filled fractures using hybrid-dimensional element formulations and non-conformal meshes

Patrick Schmidt1, Holger Steeb1
1Institute of Applied Mechanics, University of Stuttgart, Pfaffenwaldring 7, 70569 Stuttgart, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adachi, J., Siebrits, E., Peirce, A., Desroches, J.: Computer simulation of hydraulic fractures. Int. J. Rock Mech. Min. Sci. 44(5), 739–757 (2007)

Alnæs, M.S., Blechta, J., Hake, J., Johansson, A., Kehlet, B., Logg, A., Richardson, C., Ring, J., Rognes, M.E., Wells, G.N.: The FEniCS project version 1.5. Arch. Numer. Softw. 3(100), 9–23 (2015)

Bastian, P., Heimann, F., Marnach, S.: Generic implementation of finite element methods in the distributed and unified numerics environment (DUNE). Kybernetika 46(2), 294–315 (2010)

Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12(2), 155–164 (1941)

Brenner, K., Hennicker, J., Masson, R., Samier, P.: Gradient discretization of hybrid-dimensional darcy flow in fractured porous media with discontinuous pressures at matrix—fracture interfaces. IMA J. Numer. Anal. 37(3), 1551–1585 (2017). https://doi.org/10.1093/imanum/drw044

Castelletto, N., White, J.A., Tchelepi, H.A.: Accuracy and convergence properties of the fixed-stress iterative solution of two-way coupled poromechanics. Int. J. Numer. Anal. Methods Geomech. 39(14), 1593–1618 (2015). https://doi.org/10.1002/nag.2400

Coussy, O.: Poromechanics. Wiley, New York (2004)

Ehlers, W., Bluhm, J.: Porous Media: Theory, Experiments and Numerical Applications. Springer, Berlin (2013)

Geertsma, J., De Klerk, F.: A rapid method of predicting width and extent of hydraulically induced fractures. J. Pet. Technol. 21(12), 1–571 (1969)

Geuzaine, C., Remacle, J.F.: Gmsh: a 3-D finite element mesh generator with built-in pre- and post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

Girault, V., Wheeler, M.F., Ganis, B., Mear, M.E.: A lubrication fracture model in a poro-elastic medium. Math. Models Methods Appl. Sci. 25(04), 587–645 (2015). https://doi.org/10.1142/S0218202515500141

Girault, V., Kumar, K., Wheeler, M.F.: Convergence of iterative coupling of geomechanics with flow in a fractured poroelastic medium. Comput. Geosci. 20(5), 997–1011 (2016). https://doi.org/10.1007/s10596-016-9573-4

Guiducci, C., Collin, F., Radu, J.P., Pellegrino, A., Charlier, R.: Numerical modeling of hydro-mechanical fracture behaviour. NUMOG VIII, pp. 293–299 (2003)

Hanowski, K.K., Sander, O.: Simulation of deformation and flow in fractured. Poroelastic materials. ArXiv e-prints (2016)

Kim, J.M., Parizek, R.R.: Numerical simulation of the noordbergum effect resulting from groundwater pumping in a layered aquifer system. J. Hydrol. 202(1), 231–243 (1997). https://doi.org/10.1016/S0022-1694(97)00067-X

Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: drained and undrained splits. Comput. Methods Appl. Mech. Eng. 200(23), 2094–2116 (2011). https://doi.org/10.1016/j.cma.2011.02.011

Kim, J., Tchelepi, H., Juanes, R.: Stability and convergence of sequential methods for coupled flow and geomechanics: fixed-stress and fixed-strain splits. Comput. Methods Appl. Mech. Eng. 200(13), 1591–1606 (2011). https://doi.org/10.1016/j.cma.2010.12.022

Martin, V., Jaffr, J., Roberts, J.: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005). https://doi.org/10.1137/S1064827503429363

Nordgren, R., et al.: Propagation of a vertical hydraulic fracture. Soc. Pet. Eng. J. 12(04), 306–314 (1972)

Oliver, D.S., Chen, Y.: Recent progress on reservoir history matching: a review. Comput. Geosci. 15(1), 185–221 (2011)

Ortiz, R,A.E., Renner, J., Jung, R.: Hydromechanical analyses of the hydraulic stimulation of borehole basel 1. Geophy. J. Int. 185(3), 1266–1287 (2011)

Ortiz, R,A.E., Jung, R., Renner, J.: Two-dimensional numerical investigations on the termination of bilinear flow in fractures. Solid Earth 4(2), 331–345 (2013)

Peirce, A.P., Siebrits, E.: A dual mesh multigrid preconditioner for the efficient solution of hydraulically driven fracture problems. Int. J. Numer. Methods Eng. 63(13), 1797–1823 (2005). https://doi.org/10.1002/nme.1330

Perkins, T., Kern, L., et al.: Widths of hydraulic fractures. J. Pet. Technol. 13(09), 937–949 (1961)

Renner, J., Steeb, H.: Modeling of Fluid Transport in Geothermal Research, pp. 1443–1500. Springer, Berlin (2015)

Renshaw, C.E.: On the relationship between mechanical and hydraulic apertures in rough-walled fractures. J. Geophys. Res. Solid Earth 100(B12), 24629–24636 (1995)

Rodrigues, J.: The Noordbergum effect and characterization of aquitards at the Rio Maior mining project. Ground Water 21, 200–207 (1983)

Sandve, T., Berre, I., Nordbotten, J.: An efficient multi-point flux approximation method for discrete fracturematrix simulations. J. Comput. Phys. 231(9), 3784–3800 (2012). https://doi.org/10.1016/j.jcp.2012.01.023

Segura, J.M., Carol, I.: On zero-thickness interface elements for diffusion problems. Int. J. Numer. Anal. Methods Geomech. 28(9), 947–962 (2004). https://doi.org/10.1002/nag.358

Segura, J.M., Carol, I.: Coupled HM analysis using zero-thickness interface elements with double nodes. Part II: verification and application. Int. J. Numer. Anal. Methods Geomech. 32(18), 2103–2123 (2008)

Segura, J.M., Carol, I.: Coupled HM analysis using zero-thickness interface elements with double nodes. Part I: theoretical model. Int. J. Numer. Anal. Methods Geomech. 32(18), 2083–2101 (2008)

Settgast, R.R., Fu, P., Walsh, S.D., White, J.A., Annavarapu, C., Ryerson, F.J.: A fully coupled method for massively parallel simulation of hydraulically driven fractures in 3-dimensions. Int. J. Numer. Anal. Methods Geomech. 41(5), 627–653 (2017)

Shen, B., Stephansson, O., Rinne, M.: Hydro-Mechanical Coupling, pp. 77–82. Springer, Dordrecht (2014)

Sneddon, I.N., Elliot, H.A.: The opening of a Griffith crack under internal pressure. Q. Appl. Math. 4(3), 262–267 (1946)

Taleghani, A.D.: Analysis of Hydraulic Fracture Propagation in Fractured Reservoirs: An Improved Model for the Interaction Between Induced and Natural Fractures. The University of Texas at Austin, Austin (2009)

Tunc, X., Faille, I., Gallouët, T., Cacas, M.C., Havé, P.: A model for conductive faults with non-matching grids. Comput. Geosci. 16(2), 277–296 (2012). https://doi.org/10.1007/s10596-011-9267-x

Vinci, C.: Hydro-mechanical coupling in fractured rocks: modeling and numerical simulations. Ph.D. thesis. Ruhr-University Bochum (2014)

Vinci, C., Renner, J., Steeb, H.: A hybrid-dimensional approach for an efficient numerical modeling of the hydro-mechanics of fractures. Water Resour. Res. 50(2), 1616–1635 (2014)

Vinci, C., Steeb, H., Renner, J.: The imprint of hydro-mechanics of fractures in periodic pumping tests. Geophys. J. Int. 202(3), 1613–1626 (2015)

Wang, H.F.: Theory of Linear Poroelasticity. Princeton University Press, Princeton (2000)

Woodbury, A., Zhang, K.: Lanczos method for the solution of groundwater flow in discretely fractured porous media. Adv. Water Resour. 24(6), 621–630 (2001). https://doi.org/10.1016/S0309-1708(00)00047-6

Yew, C.H., Weng, X.: Mechanics of Hydraulic Fracturing. Gulf Professional Publishing, Houston (2014)

Zheltov, A.K.: Formation of vertical fractures by means of highly viscous liquid. In: 4th World Petroleum Congress. World Petroleum Congress (1955)