Numerical approximations and solution techniques for the space-time Riesz–Caputo fractional advection-diffusion equation

Siqi Shen1, Fawang Liu2, Vo Anh2
1School of Mathematical Sciences, Huaqiao University, Quanzhou, China
2School of Mathematical Sciences, Queensland University of Technology, Brisbane, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Burnecki, K., Janczura, J., Magdziarz, M., Weron, A.: Can one see a competition between subdiffusion and Lévy flights? A case of geometric-stable noise. Acta Phys. Pol., B 39, 1043–1054 (2008)

Chen, C., Liu, F., Turner, I., Anh, V.: Numerical schemes and multivariate extrapolation of a two-dimensional anomalous sub-diffusion equation. Numer. Algorithms 54, 1–21 (2010)

Ciesielski, M., Leszczynski, J.: Numerical solutions to boundary value problem for anomalous diffusion equation with Riesz–Feller fractional operator. J. Theor. Appl. Mech. 44, 393–403 (2006)

Del-Castillo-Negrete, D.: Fractional diffusion models of nonlocal transport. Phys. Plasmas 13, 082308 (2006)

Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of fractioal differential equations. Nonlinear Dyn. 29, 3–22 (2002)

Diethelm, K., Ford, N.J., Freed, A.D.: Detailed error analysis for a fractional adams method. Numer. Algorithms 36, 31–52 (2004)

Diethelm, K., Walz, G.: Numerical solution of fractional order differential equations by extrapolation. Numer. Algorithms 16, 231–253 (1997)

Deng, W.: Short memory principle and a predictor-corrector approach for fractional differential equations. J. Comput. Appl. Math. 206, 174–188 (2007)

Ford, N.J., Simpson, A.C.: The numerical solution of fractional differential equations: speed versus accuracy. Numer. Algorithms 26, 336–346 (2001)

Fulger, D., Scalas, E., Germano, G.: Monte Carlo simulation of uncoupled continuous-time random walks yielding a stochastic solution of the space-time fractional diffusion equation. Phys. Rev., E 77, 021122 (2008)

Gorenflo, R., Mainardi, F.: Approximation of Lévy–Feller diffusion by random walk. J. Anal. Appl. (ZAA) 18, 231–246 (1999)

Gorenflo, R., Vivoli, A.: Fully discrete random walks for space-time fractional diffusion equations. Signal Process. 83, 2411–2420 (2003)

Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)

Liu, F., Anh, V., Turner, I.: Numerical solution of the space fractional Fokker–Planck equation. J. Comput. Appl. Math. 166, 209–219 (2004)

Liu, F., Anh, V., Turner, I., Zhuang, P.: Numerical simulation for solute transport in fractal porous media. Australian and New Zealand Industrial and Applied Mathematics Journal 45(E), 461–473 (2004)

Liu, F., Zhuang, P., Anh, V., Turner, I., Burrage, K.: Stability and convergence of difference methods for the space-time fractional advection-diffusion equation. Appl. Math. Comput. 191, 12–20 (2007)

Magdziarz, M., Weron, A.: Fractional Fokker–Planck dynamics: stochastic representation and computer simulation. Phys. Rev., E 75, 016708 (2007)

Magdziarz, M., Weron, A.: Competition between subdiffusion and Lévy fights: a Monte Carlo approach. Phys. Rev., E 75, 056702 (2007)

Meerschaert, M.M., Scheffler, H., Tadjeran, C.: Finite difference methods for two dimensional fractional dispersion equation. J. Comput. Phys. 211, 249–261 (2006)

Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equations. J. Comput. Appl. Math. 172, 65–77 (2004)

Meerschaert, M.M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)

Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)

Podlubny, I.: Fractional Differential Equations. Academic, San Diego (1999)

Roop, J.P.: Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2. J. Comput. Appl. Math. 193, 243–268 (2006)

Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, New York (1993)

Shen, S., Liu, F., Anh, V.: Fundamental solution and discrete random walk model for a time-space fractional diffusion equation of distributed order. J. Appl. Math. Comput. 28 , 147–164 (2008)

Tadjeran, C., Meerschaert, M.M.: A second-order accurate numerical method for the two-dimensional fractional diffusion equation. J. Comput. Phys. 220, 813–823 (2007)

Tadjeran, C., Meerschaert, M.M., Scheffler, H.P.: A second-order accurate numerical approximation for the fractional diffusion equation. J. Comput. Phys. 213, 205–213 (2006)

Zaslavsky, G.M.: Chaos, fractional kinetics, and anomalous transport. Phys. Rep. 371, 461–580 (2002)

Zhuang, P., Liu, F.: Implicit difference approximation for the time fractional diffusion equation. J. Appl. Math. Comput. 22, 87–99 (2006)