Numerical and experimental study of aerosol dispersion in the Do728 aircraft cabin

CEAS Aeronautical Journal - Tập 14 - Trang 509-526 - 2023
D. Schmeling1, A. Shishkin1, D. Schiepel1, C. Wagner1,2
1German Aerospace Center (DLR), Institute of Aerodynamics and Flow Technology, Göttingen, Germany
2Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, Ilmenau, Germany

Tóm tắt

The dispersion of aerosols originating from one source, the ‘index’ passenger, within the cabin of the aircraft Do728 is studied experimentally using an aerosol-exhaling thermal manikin and in Reynolds-averaged Navier–Stokes simulations (RANS). The overall aim of the present study is the experimental determination of the aerosol spreading for the state-of-the-art mixing ventilation (MV) and to evaluate the potential of alternative ventilation concepts for controlling the aerosol spreading in RANS. For MV, the experiments showed that the ratio of inhaled to exhaled aerosol particles drops below 0.06% (volume ratio) for distances larger than two seat rows from the source. However, within a single row, the observed ratio is higher. Further, the dispersion is much weaker for a standing than for a seated index passenger. High air exchange rates and a well-guided flow prevent a dispersion of the aerosols in high concentrations over larger distances. Additionally, the positive effect of a mask and an increased air flow rate, and especially their combination are shown. In the complementary conducted RANS, the advantages of floor-based cabin displacement ventilation (CDV) which is alternative ventilation concept to MV, regarding spreading lengths and the dwell time of the aerosols in the cabin were determined. The obtained results also underline the importance of the flow field for the aerosol dispersion. Further, additional unsteady RANS (URANS) simulations of the short-term process of the initial aerosol cloud formation highlighted that the momentum decay of the breathing and the evaporation processes take place within a few seconds only.

Tài liệu tham khảo

World Health Organization—WHO “Coronavirus disease (COVID-19): How is it transmitted?” [online]. Available: https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted. Accessed 20 Aug 2021 Robert Koch Institute—RKI “Epidemiological profile of SARS-CoV-2 and COVID-19” [online]. Available: https://www.rki.de/DE/Content/InfAZ/N/Neuartiges_Coronavirus/Steckbrief.html. Accessed 20 Aug 2021 (in German) Azimi, P., Keshavarz, Z., Cedeno Laurent, J.G., Stephens, B., Allen, J.G.: "Mechanistic transmission modeling of COVID-19 on the Diamond Princess cruise ship demonstrates the importance of aerosol transmission. Proc. Natl. Acad. Sci. U. S.A. (2021). https://doi.org/10.1073/pnas.2015482118 Morawska, L., Coa, J.: Airborne transmission of SARS-CoV-2: The world should face the reality. Environ. Int. 139, 105730 (2020). https://doi.org/10.1016/j.envint.2020.105730 Kohanski, M.A., Lo, L.J., Waring, M.S.: Review of indoor aerosol generation, transport, and control in the context of COVID-19. Int. Forum Allergy Rhinol. 10, 1173–1179 (2020). https://doi.org/10.1002/alr.22661 Morawska, L., et al.: How can airborne transmission of COVID-19 indoors be minimised. Environ. Int. 142, 105832 (2020). https://doi.org/10.1016/j.envint.2020.105832. (35 co-authors) Bagheri, G., Schlenczek, O., Turco, L., Thiede, B., Stieger, K., Kosub, J.-M., Pöhlker, M.L., Pöhlker, C., Moláček, J., Scheithauer, S., Bodenschatz, E.: Exhaled particles from nanometer to millimeter and their origin in the human respiratory tract. Preprint medRxiv (2021). https://doi.org/10.1101/2021.10.01.21264333 Pöhlker, M.L., Krüger, O.O., Förster, D.-D., Berkemeier, T., Elbert, W., Fröhlich-Nowoisky, J., Pöschl, U., Pöhlker, C., Bagheri, G., Bodenschatz, E., Huffman, J.A., Scheithauer, S., Mikhailov, E.: Respiratory aerosols and droplets in the transmission of infectious diseases. Priprint arXiv (2021). https://doi.org/10.48550/arXiv.2103.01188 Bhuvan, K.C., Shrestha, R., Leggat, P.A., Shankar, P.R., Shrestha, S.: Safety of air travel during the ongoing COVID-19 pandemic. Travel Med. Infect. Dis. 43, 102103 (2021). https://doi.org/10.1016/j.tmaid.2021.102103 Rivera-Rios, J.C., et al.: In-flight particulate matter concentrations in commercial flights are likely lower than other indoor environments. Indoor Air 00, 1–11 (2021). https://doi.org/10.1111/ina.12812. (10 co-authors) Bielecki, M., et al.: Air travel and COVID-19 prevention in the pandemic and peri-pandemic period: A narrative review. Travel Med. Infect. Dis. 39, 101915 (2021). https://doi.org/10.1016/j.tmaid.2020.101915. (8 co-authors) Freedman, D.O., Wilder-Smith, A.: In-flight transmission of SARS-CoV-2: a review of the attack rates and available data on the efficacy of face masks. J. Travel Med. 27(8), taaa178 (2020). https://doi.org/10.1093/jtm/taaa178 You, R., Lin, C.-H., Wei, D., Chen, Q.: Evaluating the commercial airliner cabin environment with different air distribution systems. Indoor Air 29, 840–853 (2019). https://doi.org/10.1111/ina.12578 Silcott, D., et al.: TRANSCOM/AMC commercial aircraft cabin aerosol dispersion tests (2020), [online]. https://www.ustranscom.mil/cmd/docs/TRANSCOM%20Report%20Final.pdf. Accessed 20 Aug 2021 (15 co-authors) Netherland Aerospace Center (NLR) and National Institute for Public Health and the Environment (RIVM) (2021) “CORSICA final report” NLR-CR-2021-232 Talaat, K., Abuhegazy, M., Mahfoze, O.A., Anderoglu, O., Poroseva, S.V.: Simulation of aerosol transmission on a Boeing 737 airplane with intervention measures for COVID-19 mitigation. Phys. Fluids 33(3), 033312 (2021). https://doi.org/10.1063/5.0044720 Schijven, J., Vermeulen, L., Swart, A., Meijer, A., Duizer, E., de Roda Husman, A.: Quantitative microbial risk assessment for airborne transmission of SARS-CoV-2 via breathing, speaking, singing, coughing and sneezing. Environ. Health Perspect. (2021). https://doi.org/10.1101/2020.07.02.20144832 Gupta, J.K., Lin, C.-H., Chen, Q.: Transport of expiratory droplets in an aircraft cabin. Indoor Air 21(1), 3–11 (2011). https://doi.org/10.1111/j.1600-0668.2010.00676.x Gupta, J.K., Lin, C.-H., Chen, Q.: Inhalation of expiratory droplets in aircraft cabins. Indoor Air 21(4), 341–350 (2011). https://doi.org/10.1111/j.1600-0668.2011.00709.x Wang, Z., Galea, E.R., Grandison, A., Ewer, J., Jia, F.: Inflight transmission of COVID-19 based on aerosol dispersion data. J. Travel Med. 28(4), taab023 (2021). https://doi.org/10.1093/jtm/taab023 Bosbach, J., Lange, S., Dehne, T., Lauenroth, G., Hesselbach, F., Allzeit, M.: Alternative ventilation concepts for aircraft cabins. CEAS Aeronaut. J. 4, 301–313 (2013). https://doi.org/10.1007/s13272-013-0074-z OpenFOAM [online]. https://www.openfoam.com. Accessed 5 Feb 2021. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994). https://doi.org/10.2514/3.12149 Menter, F.R., Kuntz, M., Langtry, R.: Ten years of industrial experience with the SST turbulence model. Turbul. Heat and Mass Transf. 4, 625–632 (2003) Warming, R.F., Beam, M.: Upwind second-order difference schemes and applications in aerodynamic flows. AIAA J. 14(9), 12411249 (1976). https://doi.org/10.2514/3.61457 Chao, C.Y.H., Wan, M.P., Morawska, L., Johnson, G.R., Ristovski, Z.D., Hargreaves, M., Mengersen, K., Corbett, S., Li, Y., Xie, X., Katoshevski, D.: Characterization of expiration air jets and droplet size distributions immediately at the mouth opening. J. Aerosol Sci. 40(2), 122–133 (2009). https://doi.org/10.1016/j.jaerosci.2008.10.003 Elghobashi, S.: On predicting particle-laden turbulent flows. Appl. Sci. Res. 52(4), 309–329 (1994). https://doi.org/10.1007/BF00936835 Yuu, S., Yasukouchi, N., Hirosawa, Y., Jotaki, T.: Particle turbulent diffusion in a dust laden round jet. AIChE J. 24, 509–519 (1978). https://doi.org/10.1002/aic.690240316 Bundesvereinigung Deutscher Apotheker-verbände, editor. Deutscher Arzneimittel-Codex®/Neues Rezeptur-Formularium® (DAC/NRF). Eschborn: AVOXA-Mediengruppe Deutscher Apotheker GmbH (2017) (in German) SENSIRION, 2020. [online]. https://www.sensirion.com/fileadmin/user_upload/customers/sensirion/Dokumente/9.6_Particulate_Matter/Datasheets/Sensirion_PM_Sensors_Datasheet_SPS30.pdf. Accessed 5 Feb 2021. Tryner, J., Mehaffy, J., Miller-Lionberg, D., Volckens, J.: Effects of aerosol type and simulated aging on performance of low-cost PM sensors. J. Aerosol Sci. (2020). https://doi.org/10.1016/j.jaerosci.2020.105654 Schiepel, D., Niehaus, K., Schmeling, D.: Generation, detection and analysis of aerosol spreading using low-cost sensors. In: Proceedings of the European Aerosol Conference—EAC 2021, online, p. 684 (2021) Gupta, K.J., Lin, C.-H., Chen, Q.: Characterizing exhaled airflow from breathing and talking. Indoor Air 20.1, 31–39 (2010). https://doi.org/10.1111/j.1600-0668.2009.00623.x Yan, Y., Li, X., Tu, J.: Effects of passenger thermal plume on the transport and distribution characteristics of airborne particles in an airline cabin section. Sci. Technol. Built Environ. 22(2), 153–163 (2015). https://doi.org/10.1080/23744731.2015.1090254 Bagheri, G., Thiede, B., Hejazi, B., Schlenczek, O., Bodenschatz, E.: An upper bound on one-to-one exposure to infectious human respiratory particles. Proc. Natl. Acad. Sci. (PNAS) 118(49), e2110117118 (2021). https://doi.org/10.1073/pnas.2110117118 Pan, J., Harb, C., Leng, W., Marr, L.C.: Inward and outward effectiveness of cloth masks, a surgical mask, and a face shield. Aerosol Sci. Technol. 55, 718–733 (2021). https://doi.org/10.1080/02786826.2021.1890687