Numerical and experimental investigations on new jar designs for high efficiency planetary ball milling

Advanced Powder Technology - Tập 31 - Trang 2641-2649 - 2020
M. Broseghini1, M. D’Incau1, L. Gelisio1, N.M. Pugno2,3, P. Scardi1
1Department of Civil, Environmental & Mechanical Engineering, University of Trento, via Mesiano, 77, 38123 Trento, Italy
2Laboratory of Bio-inspired, Bionic, Nano, Meta Materials & Mechanics, Department of Civil, Environmental & Mechanical Engineering, University of Trento, via Mesiano, 77, 38123 Trento, Italy
3School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, London E1 4NS, United Kingdom

Tài liệu tham khảo

Burmeister, 2013, Process engineering with planetary ball mills, Chem. Soc. Rev., 42, 7660, 10.1039/c3cs35455e D’Incau, 2007, High-energy grinding of FeMo powders, J. Mater. Res., 22, 1744, 10.1557/JMR.2007.0224 Šepelák, 2012, Transformations in oxides induced by high-energy ball-milling, Dalton Trans., 41, 11927, 10.1039/c2dt30349c Stolle, 2011, Ball milling in organic synthesis: solutions and challenges, Chem. Soc. Rev., 40, 2317, 10.1039/c0cs00195c Colombo, 2009, Drug mechanochemical activation, J. Pharm. Sci., 98, 3961, 10.1002/jps.21733 Cappelletto, 2017, Microstructural effects of high-energy grinding on poorly soluble drugs: the case study of Efavirenz, Powder Diffr., 1 VV.AA., High-Energy Ball Milling: Mechanochemical Processing of Nanopowders, Woodhead Publishing, 2010. Brun, 1993, The modelling of the mechanical alloying process in a planetary ball mill: comparison between theory and in-situ observations, Mater. Sci. Eng.: A, 161, 75, 10.1016/0921-5093(93)90477-V Rosenkranz, 2011, Experimental investigations and modelling of the ball motion in planetary ball mills, Powder Technol., 212, 224, 10.1016/j.powtec.2011.05.021 Rogachev, 2015, Experimental investigation of milling regimes in planetary ball mill and their influence on structure and reactivity of gasless powder exothermic mixtures, Powder Technol., 274, 44, 10.1016/j.powtec.2015.01.009 Burgio, 1991, Mechanical alloying of the Fe-Zr system. correlation between input energy and end products, Il Nuovo Cimento, 13, 459, 10.1007/BF02452130 Mio, 2002, Effects of rotational direction and rotation-to-revolution speed ratio in planetary ball milling, Mater. Sci. Eng.: A, 332, 75, 10.1016/S0921-5093(01)01718-X Schneider, 2009, The suzuki - miyaura reaction under mechanochemical conditions, Organ. Process Res. Develop., 13, 44, 10.1021/op800148y Szuppa, 2010, Solvent-free dehydrogenation of [gamma]-terpinene in a ball mill: investigation of reaction parameters, Green Chem., 12, 1288, 10.1039/c002819c Matsuoka, 2010, Kinetics of solid-state polymorphic transition of glycine in mechano-chemical processing, Chem. Eng. Res. Des., 88, 1169, 10.1016/j.cherd.2010.01.011 H. Mio, J. Kano, F. Saito, K. Kaneko, Optimum revolution and rotational directions and their speeds in planetary ball milling, Int. J. Miner. Process. 74 (2004) S85–S92, special Issue Supplement Comminution 2002. doi:10.1016/j.minpro.2004.07.002. Broseghini, 2016, Effect of jar shape on high-energy planetary ball milling efficiency: Simulations and experiments, Mater. Des., 110, 365, 10.1016/j.matdes.2016.06.118 D’incau, 2008 Baláz, 2013, Hallmarks of mechanochemistry: from nanoparticles to technology, Chem. Soc. Rev., 42, 7571, 10.1039/c3cs35468g Chauruka, 2015, Effect of mill type on the size reduction and phase transformation of gamma alumina, Chem. Eng. Sci., 134, 774, 10.1016/j.ces.2015.06.004 Antisari, 2006, Low energy pure shear milling: A method for the preparation of graphite nano-sheets, Scripta Mater., 55, 1047, 10.1016/j.scriptamat.2006.08.002 Suryanarayana, 2001, Mechanical alloying and milling, Prog. Mater Sci., 46, 1, 10.1016/S0079-6425(99)00010-9 Fritsch Vario-Planetary Mill PULVERISETTE 4, <http://www.fritsch-milling.com/products/milling/planetary-mills/pulverisette-4-classic-line/description/>. MSC Adams, <http://www.mscsoftware.com/it/product/adams>. Broseghini, 2016, Modeling of the planetary ball-milling process: The case study of ceramic powders, J. Eur. Ceram. Soc., 36, 2205, 10.1016/j.jeurceramsoc.2015.09.032 Lankarani, 1994, Continuous contact force models for impact analysis in multibody systems, Nonlinear Dyn., 5, 193, 10.1007/BF00045676 Dubowsky, 1971, Dynamic analysis of mechanical systems with clearances – part 1: Formation of dynamic model, J. Eng. Indust., 93, 305, 10.1115/1.3427895 Goldsmith, 2001 Broseghini, 2017 Hilber, 1977, Improved numerical dissipation for time integration algorithms in structural dynamics, Earthquake Eng. Struct. Dynam., 5, 283, 10.1002/eqe.4290050306 Negrut, 2006, On an implementation of the Hilber-Hughes-Taylor method in the context of index 3 differential-algebraic equations of multibody dynamics (detc2005-85096), J. Comput. Nonlinear Dyn., 2, 73, 10.1115/1.2389231 VV.AA., Defect and Microstructure Analysis by Diffraction, Oxford University Press, 1999. AA., 2004 Broseghini, 2017, Homogeneity of ball milled ceramic powders: effect of jar shape and milling conditions, Data in Brief, 10, 186, 10.1016/j.dib.2016.11.070 Scardi, 2008, Microstructural properties: Lattice defects and domain size effects, 378 Scardi, 2001, Diffraction line profiles from polydisperse crystalline systems, Acta Crystallogr. Sect. A, 57, 604, 10.1107/S0108767301008881 Scardi, 2002, Whole powder pattern modelling, Acta Crystallogr. Sect. A, 58, 190, 10.1107/S0108767301021298 Hellstern, 1989, Structural and thermodynamic properties of heavily mechanically deformed ru and alru, J. Appl. Phys., 65, 305, 10.1063/1.342541 Huang, 1995, Ball milling of ductile metals, Mater. Sci. Eng.: A, 199, 165, 10.1016/0921-5093(94)09715-1 Révész, 1996, Dislocations and grain size in ball-milled iron powder, Nanostruct. Mater., 7, 779, 10.1016/S0965-9773(96)00048-7 L. Börner, J. Eckert, Nanostructure formation and steady-state grain size of ball-milled iron powders, Materials Science and Engineering: A 226 (1997) 541 – 545, ninth International Conference on Rapidly Quenched and Metastable Materials. doi:10.1016/S0921-5093(97)80063-9. Vives, 2004, X-ray diffraction line profile analysis of iron ball milled powders, Mater. Sci. Eng.: A, 366, 229, 10.1016/S0921-5093(03)00572-0 Boytsov, 2007, Correlation between milling parameters and microstructure characteristics of nanocrystalline copper powder prepared via a high energy planetary ball mill, J. Alloy. Compd., 432, 103, 10.1016/j.jallcom.2006.05.101 Topas-Academic, <http://www.topas-academic.net>. A. Kwade, Mill selection and process optimization using a physical grinding model, International Journal of Mineral Processing 74 (2004) S93–S101, special Issue Supplement Comminution 2002. doi:10.1016/j.minpro.2004.07.027. Urakaev, 2009, Mineral processing by the abrasive-reactive wear, Int. J. Miner. Process., 92, 58, 10.1016/j.minpro.2009.02.010 Fulmer, 2009, Solvent-free sonogashira coupling reaction viahigh speed ball milling, Green Chem., 11, 1821, 10.1039/b915669k Balema, 2002, Solvent-free mechanochemical synthesis of phosphonium salts, Chem. Commun., 724, 10.1039/b111515d Sato, 2010, Analysis of abrasion mechanism of grinding media in a planetary mill with dem simulation, Adv. Powder Technol., 21, 212, 10.1016/j.apt.2010.01.005 Ivanov, 2000, Materials and process design through mechanochemical routes, J. Mater. Synth. Process., 8, 235, 10.1023/A:1011372312172