Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate

Experimental Thermal and Fluid Science - Tập 74 - Trang 235-246 - 2016
Mohamed A. Teamah1,2, Mohamed M. Khairat Dawood3, Ali Shehata1
1Mechanical Engineering Department, Arab Academy for Science, Technology and Maritime Transport Abu-Quir, Alexandria, Egypt
2Mechanical Engineering Department, Alexandria University, Alexandria Egypt
3Mechanical Engineering Department, Suez Canal University, Ismailia, Egypt

Tài liệu tham khảo

Afroz, 2013, Numerical study of heat transfer from an isothermally heated flat surface due to turbulent twin oblique confined slot-jet impingement, Int. J. Therm. Sci., 74, 1, 10.1016/j.ijthermalsci.2013.07.004 Narumanchi, 2003, Influence of pulsating submerged liquid jets on chip-level thermal phenomena, Trans. ASME, 125, 354 M. Fabbri, S. Jiang, V.K. Dhir, Experimental investigation of single-phase micro jets impingement cooling for electronic applications, in: Proc. of the HT2003 ASME Summer Heat Transfer Conference, Las Vegas, Nevada, USA, July 21–23, 2003. Hollworth, 1992, Impingement cooling of electronics, J. Heat Transf. ASME, 114, 607, 10.1115/1.2911324 Stevens, 1992, Measurements of the free surface flow structure under an impinging, free liquid jet, J. Heat Transfer, 114, 79, 10.1115/1.2911271 Liu, 1991, Convective heat transfer by impingement of circular liquid jets, ASME J. Heat Transf., 113, 571, 10.1115/1.2910604 Ibuki, 2009, Heat transfer characteristics of a planar water jet impinging normally or obliquely on a flat surface at relatively low Reynolds numbers, Exp. Thermal Fluid Sci., 33, 1226, 10.1016/j.expthermflusci.2009.08.003 Teamah, 2003, Experimental and numerical heat transfer from impinging of single free liquid jet, Alexandria Eng. J., 42, 559 Teamah, 2006, Experimental heat transfer due to impinging of water from multiple jets on a heated surface, Alexandria Eng. J., 45, 1 Teamah, 2012, Experimental investigation for hydrodynamic flow due to obliquely free circular water jet impinging on horizontal flat plate, Eur. J. Sci. Res., 83, 60 Teamah, 2015, Heat transfer due to impinging double free circular jets, Alexandria Eng. J., 54, 281, 10.1016/j.aej.2015.05.010 Stevens, 1991, The effect of inclination on local heat transfer under an axsymmetric free liquid jet, Int. J. Heat Mass Transf., 34, 1227, 10.1016/0017-9310(91)90031-9 Whelan Brian, 2009, Nozzle geometry effects in liquid jet array impingement, Appl. Therm. Eng., 29, 2211, 10.1016/j.applthermaleng.2008.11.003 Dou, 2014, Experimental study on heat-transfer characteristics of circular water jet impinging on high-temperature stainless steel plate, Appl. Therm. Eng., 62, 738, 10.1016/j.applthermaleng.2013.10.037 Karwa, 2013, Experimental investigation of free-surface jet impingement quenching process, Int. J. Heat Mass Transf., 64, 1118, 10.1016/j.ijheatmasstransfer.2013.05.014 Kakaç, 2009, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transf., 52, 3187, 10.1016/j.ijheatmasstransfer.2009.02.006 Xuan, 2000, Heat transfer enhancement of nanofluid, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3 Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, ASME Fluids Eng. Div., 231, 99 Liu, 2007, Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface, Heat Mass Transf., 43, 699, 10.1007/s00231-006-0159-x Yousefi, 2013, An experimental investigation on the impingement of a planar jet of Al2O3–water nanofluid on a V-shaped plate, Exp. Thermal Fluid Sci., 50, 114, 10.1016/j.expthermflusci.2013.05.011 Nguyen, 2009, An experimental study of a confined and submerged impinging jet heat transfer using Al2O3–water nanofluid, Int. J. Therm. Sci., 48, 401, 10.1016/j.ijthermalsci.2008.10.007 Li, 2012, Experimental investigation of submerged single jet impingement using Cu–water nanofluid, Appl. Therm. Eng., 36, 426, 10.1016/j.applthermaleng.2011.10.059 Nguyen, 2009, An experimental study of a confined and submerged impinging jet heat transfer using Al2O3–water nanofluid, Int. J. Therm. Sci., 48, 401, 10.1016/j.ijthermalsci.2008.10.007 C. Nguyen, G. Laplante, M. Cury, G. Simon, Experimental investigation of impinging jet heat transfer and erosion effect using Al2O3–water nanofluid, in: 6thIASME/WSEAS International Conference on Fluid Mechanics and Aerodynamics (FMA’08), Rhodes, Greece, August 20–22, 2008. Jaberi, 2013, Experimental investigation on heat transfer enhancement due to Al2O3–water nanofluid using impingement of round jet on circular disk, Int. J. Therm. Sci., 74, 199, 10.1016/j.ijthermalsci.2013.06.013 Naphon, 2011, Experimental study of jet nanofluids impingement system for cooling computer processing unit, J. Electron. Cooling Therm. Control, 1, 38, 10.4236/jectc.2011.13005 Naphon, 2012, Nanofluid jet impingement heat transfer characteristics in the rectangular mini-fin heat sink, J. Eng. Phys. Thermophys., 85, 1324, 10.1007/s10891-012-0793-8 Roy, 2012, Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows, Int. J. Therm. Sci., 58, 120, 10.1016/j.ijthermalsci.2012.03.009 Chang, 2012, Effects of particle volume fraction on spray heat transfer performance of Al2O3–water nanofluid, Int. J. Heat Mass Transf., 55, 1014, 10.1016/j.ijheatmasstransfer.2011.10.009 Chakraborty, 2010, Application of water based-TiO2 nanofluid for cooling of hot steel plate, ISIJ Int., 50, 124, 10.2355/isijinternational.50.124 Zeitoun, 2012, Nanofluid impingement jet heat transfer, Nanoscale Res. Lett., 7, 139, 10.1186/1556-276X-7-139 R.B. Abernethy, R.P. Benedict, R.B. Dowdell, ASME Measurement Uncertainty, ASME Paper, 1983, 83-WA/FM-3. Brinkman, 1952, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, 571, 10.1063/1.1700493 Stevens, 1991, Local heat transfer coefficients under an axisymmetric single phase liquid jet, ASME J. Heat Transf., 113, 71, 10.1115/1.2910554