Numerical and experimental investigation of flow structure and behavior of nanofluids flow impingement on horizontal flat plate
Tài liệu tham khảo
Afroz, 2013, Numerical study of heat transfer from an isothermally heated flat surface due to turbulent twin oblique confined slot-jet impingement, Int. J. Therm. Sci., 74, 1, 10.1016/j.ijthermalsci.2013.07.004
Narumanchi, 2003, Influence of pulsating submerged liquid jets on chip-level thermal phenomena, Trans. ASME, 125, 354
M. Fabbri, S. Jiang, V.K. Dhir, Experimental investigation of single-phase micro jets impingement cooling for electronic applications, in: Proc. of the HT2003 ASME Summer Heat Transfer Conference, Las Vegas, Nevada, USA, July 21–23, 2003.
Hollworth, 1992, Impingement cooling of electronics, J. Heat Transf. ASME, 114, 607, 10.1115/1.2911324
Stevens, 1992, Measurements of the free surface flow structure under an impinging, free liquid jet, J. Heat Transfer, 114, 79, 10.1115/1.2911271
Liu, 1991, Convective heat transfer by impingement of circular liquid jets, ASME J. Heat Transf., 113, 571, 10.1115/1.2910604
Ibuki, 2009, Heat transfer characteristics of a planar water jet impinging normally or obliquely on a flat surface at relatively low Reynolds numbers, Exp. Thermal Fluid Sci., 33, 1226, 10.1016/j.expthermflusci.2009.08.003
Teamah, 2003, Experimental and numerical heat transfer from impinging of single free liquid jet, Alexandria Eng. J., 42, 559
Teamah, 2006, Experimental heat transfer due to impinging of water from multiple jets on a heated surface, Alexandria Eng. J., 45, 1
Teamah, 2012, Experimental investigation for hydrodynamic flow due to obliquely free circular water jet impinging on horizontal flat plate, Eur. J. Sci. Res., 83, 60
Teamah, 2015, Heat transfer due to impinging double free circular jets, Alexandria Eng. J., 54, 281, 10.1016/j.aej.2015.05.010
Stevens, 1991, The effect of inclination on local heat transfer under an axsymmetric free liquid jet, Int. J. Heat Mass Transf., 34, 1227, 10.1016/0017-9310(91)90031-9
Whelan Brian, 2009, Nozzle geometry effects in liquid jet array impingement, Appl. Therm. Eng., 29, 2211, 10.1016/j.applthermaleng.2008.11.003
Dou, 2014, Experimental study on heat-transfer characteristics of circular water jet impinging on high-temperature stainless steel plate, Appl. Therm. Eng., 62, 738, 10.1016/j.applthermaleng.2013.10.037
Karwa, 2013, Experimental investigation of free-surface jet impingement quenching process, Int. J. Heat Mass Transf., 64, 1118, 10.1016/j.ijheatmasstransfer.2013.05.014
Kakaç, 2009, Review of convective heat transfer enhancement with nanofluids, Int. J. Heat Mass Transf., 52, 3187, 10.1016/j.ijheatmasstransfer.2009.02.006
Xuan, 2000, Heat transfer enhancement of nanofluid, Int. J. Heat Fluid Flow, 21, 58, 10.1016/S0142-727X(99)00067-3
Choi, 1995, Enhancing thermal conductivity of fluids with nanoparticles, ASME Fluids Eng. Div., 231, 99
Liu, 2007, Boiling heat transfer characteristics of nanofluids jet impingement on a plate surface, Heat Mass Transf., 43, 699, 10.1007/s00231-006-0159-x
Yousefi, 2013, An experimental investigation on the impingement of a planar jet of Al2O3–water nanofluid on a V-shaped plate, Exp. Thermal Fluid Sci., 50, 114, 10.1016/j.expthermflusci.2013.05.011
Nguyen, 2009, An experimental study of a confined and submerged impinging jet heat transfer using Al2O3–water nanofluid, Int. J. Therm. Sci., 48, 401, 10.1016/j.ijthermalsci.2008.10.007
Li, 2012, Experimental investigation of submerged single jet impingement using Cu–water nanofluid, Appl. Therm. Eng., 36, 426, 10.1016/j.applthermaleng.2011.10.059
Nguyen, 2009, An experimental study of a confined and submerged impinging jet heat transfer using Al2O3–water nanofluid, Int. J. Therm. Sci., 48, 401, 10.1016/j.ijthermalsci.2008.10.007
C. Nguyen, G. Laplante, M. Cury, G. Simon, Experimental investigation of impinging jet heat transfer and erosion effect using Al2O3–water nanofluid, in: 6thIASME/WSEAS International Conference on Fluid Mechanics and Aerodynamics (FMA’08), Rhodes, Greece, August 20–22, 2008.
Jaberi, 2013, Experimental investigation on heat transfer enhancement due to Al2O3–water nanofluid using impingement of round jet on circular disk, Int. J. Therm. Sci., 74, 199, 10.1016/j.ijthermalsci.2013.06.013
Naphon, 2011, Experimental study of jet nanofluids impingement system for cooling computer processing unit, J. Electron. Cooling Therm. Control, 1, 38, 10.4236/jectc.2011.13005
Naphon, 2012, Nanofluid jet impingement heat transfer characteristics in the rectangular mini-fin heat sink, J. Eng. Phys. Thermophys., 85, 1324, 10.1007/s10891-012-0793-8
Roy, 2012, Heat transfer performance and hydrodynamic behavior of turbulent nanofluid radial flows, Int. J. Therm. Sci., 58, 120, 10.1016/j.ijthermalsci.2012.03.009
Chang, 2012, Effects of particle volume fraction on spray heat transfer performance of Al2O3–water nanofluid, Int. J. Heat Mass Transf., 55, 1014, 10.1016/j.ijheatmasstransfer.2011.10.009
Chakraborty, 2010, Application of water based-TiO2 nanofluid for cooling of hot steel plate, ISIJ Int., 50, 124, 10.2355/isijinternational.50.124
Zeitoun, 2012, Nanofluid impingement jet heat transfer, Nanoscale Res. Lett., 7, 139, 10.1186/1556-276X-7-139
R.B. Abernethy, R.P. Benedict, R.B. Dowdell, ASME Measurement Uncertainty, ASME Paper, 1983, 83-WA/FM-3.
Brinkman, 1952, The viscosity of concentrated suspensions and solutions, J. Chem. Phys., 20, 571, 10.1063/1.1700493
Stevens, 1991, Local heat transfer coefficients under an axisymmetric single phase liquid jet, ASME J. Heat Transf., 113, 71, 10.1115/1.2910554