Numerical and dietary responses of a predator community in a temperate zone of Europe

Ecography - Tập 32 Số 2 - Trang 277-290 - 2009
Gilles Dupuy, Patrick Giraudoux1, Pierre Delattre2
1Laboratoire Chrono-environnement - CNRS - UBFC (UMR 6249)
2Centre de Biologie pour la Gestion des Populations

Tóm tắt

The generalist predation hypothesis predicts that the functional responses of generalist predator species should be quicker than those of specialist predators and have a regulating effect on vole populations. New interpretations of their role in temperate ecosystems have, however, reactivated a debate suggesting generalist predators may have a destabilizing effect under certain conditions (e.g. landscape homogeneity, low prey diversity, temporary dominance of 1 prey species associated with a high degree of dietary specialization). We studied a rich predator community dominated by generalist carnivores (Martes spp., Vulpes vulpes, Felis catus) over a 6 yr period in farmland and woodland in France. The most frequent prey were small rodents (mostly Microtus arvalis, a grassland species, and Apodemus spp., a woodland species). Alternative prey were diverse and dominated by lagomorphs (Oryctolagus cuniculus, Lepus europeus). We detected a numerical response among specialist carnivores but not among generalist predators. The dietary responses of generalist predators were fairly complex and most often dependent on variation in density of at least 1 prey species. These results support the generalist predation hypothesis. We document a switch to alternative prey, an increase of diet diversity, and a decrease of diet overlap between small and medium‐sized generalists during the low density phase of M. arvalis. In this ecosystem, the high density phases of small mammal species are synchronous and cause a temporary specializing of several generalist predator species. This rapid functional response may indicate the predominant role of generalists in low amplitude population cycles of voles observed in some temperate areas.

Từ khóa


Tài liệu tham khảo

10.2307/3543597

10.1111/j.1469-7998.1967.tb01653.x

10.4098/AT.arch.87-16

Bergerud A., 1984, Changement de proie dans un écosystème simple, Pour la Science, 76, 76

Burnham K. P., 2002, Model selection and multimodel inference: a practical information‐theoretic approach

10.1111/j.1469-7998.1966.tb02948.x

Debrot S., 1982, Atlas des poils de mammifères d'Europe

Delattre P., 1983, Analyse d'une relation proie‐prédateur pour le modèle micromammifères‐petits mustélidés en milieu de type agroécosystème. Méthode d'évaluation de la pression de prédation exercée, Acta Oecol. Oecol. Gen, 4, 179

Delattre P., 1984, Influence de la pression de prédation exercée par une population de belettes (Mustela nivalis L.) sur un peuplement de microtidé, Acta Oecol. Oecol. Gen, 5, 285

Delattre P., 1990, Recherche d'un indicateur de la cinétique démographique des populations du campagnol des champs (Microtus arvalis), Rev. Ecol. Terre Vie, 45, 375

10.1016/0167-8809(92)90051-C

10.1023/A:1008022727025

10.2307/3544197

10.1086/284191

10.1111/j.1439-0264.1979.tb00817.x

Giraudoux P., 2006, R package version 1.3.4

Hanski I., 1988, Populations and communities in changing agro‐ecosystems in Finland, Ecol. Bull, 39, 159

10.2307/5465

10.1890/0012-9658(2001)082[1505:SRDAP]2.0.CO;2

Hansson L., 1993, Spatial dynamics in relation to density variations of rodents in a forest landscape, Mammalia, 57, 632

Hansson L., 1995, Landscape approaches in mammalian ecology and conservation, 20

Hansson L., 2002, Cestode zoonoses: echinococcosis and cysticercosis, 267

10.1007/BF00384946

10.1016/0169-5347(88)90006-7

Henttonen H..1986.Causes and geographic patterns of microtine cyclesPh.D. thesis Dept of Zoology Univ. of Helsinki.

Holling C. S., 1959, The components of predation as revealed by a study of small mammal predation of the European pine sawfly, Can. Entomol, 21, 293, 10.4039/Ent91293-5

Keller A., 1981, Détermination des mammifères de la Suisse par leur pelage. Lagomorpha, Rodentia, Rev. Suisse Zool, 85, 758, 10.5962/bhl.part.82264

10.1034/j.1600-0706.2002.990109.x

10.1098/rspb.2002.1972

10.1016/S0169-5347(03)00159-9

10.1111/j.1365-2656.2005.01015.x

10.1098/rspb.2004.2860

10.1007/BF02765231

10.1046/j.1365-2656.2000.00380.x

10.1111/j.1365-2656.2006.01051.x

Le Louarn H., 1973, Relations entre la production de faines et la dynamique des populations du mulot (Apodemus sylvaticus) en forêt de Fontainebleau, Ann. Sci. For, 30, 205

Le Louarn H., 2003, Les rongeurs de France. Faunistique et biologie

10.2307/1381374

Lidicker W. Z. J., 1994, A spatially explicit approach to vole population processes, Polish Ecol. Stud, 20, 215

Lidicker W. Z. J., 1995, Landscape approaches in mammalian ecology and conservation, 3

10.1023/A:1017100619756

10.1034/j.1600-0706.2000.910304.x

10.1007/BF03192478

10.2307/3565208

10.1038/18769

10.1046/j.1365-2907.2000.00064.x

10.1111/j.1469-7998.1999.tb01045.x

Quéré J. P., 2000, An index method of estimating relative population densities of the common vole (Microtus arvalis) at landscape scale, Rev. Ecol. Terre Vie, 55, 25

10.1016/S0020-7519(03)00127-9

R Development Core Team, 2006, R: a language and environment for statistical computing

10.1890/0012-9615(1997)067[0089:POPONL]2.0.CO;2

Spitz F., 1974, Standardisation des piégeages en ligne pour quelques espèces de rongeurs, Rev. Ecol. Terre Vie, 24, 564

10.1034/j.1600-0587.2002.250109.x

10.1111/j.1365-2656.2004.00795.x

10.1098/rspb.2001.1694

10.1111/j.1461-0248.2004.00673.x