Numerical analysis of the mirco-particles distribution inside an underground subway system due to train piston effect

Tahereh Izadi1,2, Mozaffar Ali Mehrabian1, Goodarz Ahmadi3, Omid Abouali2
1Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Iran
2School of Mechanical Engineering, Shiraz University, Iran
3Department of Aeronautical and Mechanical Engineering, Clarkson University, Potsdam, NY, USA

Tài liệu tham khảo

Aarnio, 2005, The concentrations and composition of and exposure to fine particles (PM2. 5) in the Helsinki subway system, Atmos. Environ., 39, 5059, 10.1016/j.atmosenv.2005.05.012 Abbasi, 2012, A pin-on-disc study of the rate of airborne wear particle emissions from railway braking materials, Wear, 284, 18, 10.1016/j.wear.2012.01.016 Abbasi, 2012, A field test study of airborne wear particles from a running regional train, Proc. Inst. Mech. Eng. - Part F J. Rail Rapid Transit, 226, 95, 10.1177/0954409711408774 Abbasi, 2011, A study of airborne wear particles generated from organic railway brake pads and brake discs, Wear, 273, 93, 10.1016/j.wear.2011.04.013 Birenzvige, 2003, Aerosol characteristics in a subway environment, Aerosol Sci. Technol., 37, 210, 10.1080/02786820300941 Braniš, 2006, The contribution of ambient sources to particulate pollution in spaces and trains of the Prague underground transport system, Atmos. Environ., 40, 348, 10.1016/j.atmosenv.2005.09.060 Cao, 2017, Study on the impacts of human walking on indoor particles dispersion using momentum theory method, Build. Environ., 126, 195, 10.1016/j.buildenv.2017.10.001 Chan, 2002, Exposure level of carbon monoxide and respirable suspended particulate in public transportation modes while commuting in urban area of Guangzhou, China, Atmos. Environ., 36, 5831, 10.1016/S1352-2310(02)00687-8 Cheng, 2008, Levels of PM10 and PM2. 5 in Taipei rapid transit system, Atmos. Environ., 42, 7242, 10.1016/j.atmosenv.2008.07.011 Cheng, 1979, Particle bounce in cascade impactors, Environ. Sci. Technol., 13, 1392, 10.1021/es60159a017 Chillrud, 2004, Elevated airborne exposures of teenagers to manganese, chromium, and iron from steel dust and New York City’s subway system, Environ. Sci. Technol., 38, 732, 10.1021/es034734y Colombi, 2013, Particulate matter concentrations, physical characteristics and elemental composition in the Milan underground transport system, Atmos. Environ., 70, 166, 10.1016/j.atmosenv.2013.01.035 Cross, 2015, A validated numerical investigation of the effects of high blockage ratio and train and tunnel length upon underground railway aerodynamics, J. Wind Eng. Ind. Aerod., 146, 195, 10.1016/j.jweia.2015.09.004 Cui, 2016, Granulometric and magnetic properties of deposited particles in the Beijing subway and the implications for air quality management, Sci. Total Environ., 568, 1059, 10.1016/j.scitotenv.2016.06.154 Fridell, 2011, On-board measurements of particulate matter emissions from a passenger train, Proc. Inst. Mech. Eng. - Part F J. Rail Rapid Transit, 225, 99, 10.1177/09544097JRRT407 Fridell, 2010, Emissions of particulate matters from railways–Emission factors and condition monitoring, Transport. Res. D-Tr. E., 15, 240, 10.1016/j.trd.2010.02.006 Fromme, 1998, Polycyclic aromatic hydrocarbons (PAH) and diesel engine emission (elemental carbon) inside a car and a subway train, Sci. Total Environ., 217, 165, 10.1016/S0048-9697(98)00189-2 Furuya, 2001, Seasonal variation and their characterization of suspended particulate matter in the air of subway stations, J. Trace Microprobe Tech., 19, 469, 10.1081/TMA-100107583 González, 2014, Numerical modeling of the piston effect in longitudinal ventilation systems for subway tunnels, Tunn. Undergr. Space Technol., 40, 22, 10.1016/j.tust.2013.09.008 Hinds, 2012 Huang, 2010, A numerical study of the train-induced unsteady airflow in a subway tunnel with natural ventilation ducts using the dynamic layering method, J. Hydrodyn. B, 22, 164, 10.1016/S1001-6058(09)60042-1 Izadi, 2020, Investigation of the effects of different parameters on the generated pressure waves inside the tunnels, SN Applied Sciences, 2, 1, 10.1007/s42452-020-2572-z Izadi, 2019, 3-D numerical analysis of train-induced flow inside four ventilated underground subway stations and connecting tunnels, J. Wind Eng. Ind. Aerod., 193, 103974, 10.1016/j.jweia.2019.103974 Jiang, 2019, Numerical prediction of the slipstream caused by the trains with different marshalling forms entering a tunnel, J. Wind Eng. Ind. Aerod., 189, 276, 10.1016/j.jweia.2019.04.002 Johansson, 2003, Particulate matter in the underground of Stockholm, Atmos. Environ., 37, 3, 10.1016/S1352-2310(02)00833-6 Jung, 2010, Source identification of particulate matter collected at underground subway stations in Seoul, Korea using quantitative single-particle analysis, Atmos. Environ., 44, 2287, 10.1016/j.atmosenv.2010.04.003 Kam, 2011, Particulate matter (PM) concentrations in underground and ground-level rail systems of the Los Angeles Metro, Atmos. Environ., 45, 1506, 10.1016/j.atmosenv.2010.12.049 Karlsson, 2005, Subway particles are more genotoxic than street particles and induce oxidative stress in cultured human lung cells, Chem. Res. Toxicol., 18, 19, 10.1021/tx049723c Kennedy, 1976 Kim, 2009, Effects of vent shaft location on the ventilation performance in a subway tunnel, J. Wind Eng. Ind. Aerod., 97, 174, 10.1016/j.jweia.2009.06.002 Kim, 2007, Experimental and numerical analyses of train-induced unsteady tunnel flow in subway, Tunn. Undergr. Space Technol., 22, 166, 10.1016/j.tust.2006.06.001 Kim, 2008, Spatial distribution of particulate matter (PM10 and PM2. 5) in Seoul Metropolitan Subway stations, J. Hazard Mater., 154, 440, 10.1016/j.jhazmat.2007.10.042 Knibbs, 2010, Exposure to ultrafine particles and PM2. 5 in four Sydney transport modes, Atmos. Environ., 44, 3224, 10.1016/j.atmosenv.2010.05.026 Levy, 2000, Particle concentrations in urban microenvironments, Environ. Health Perspect., 108, 1051 Li, 2019, Flexible real-time ventilation design in a subway station accommodating the various outdoor PM10 air quality from climate change variation, Build. Environ., 153, 77, 10.1016/j.buildenv.2019.02.029 Li, 2019, Influence of the enlarged portal length on pressure waves in railway tunnels with cross-section expansion, J. Wind Eng. Ind. Aerod., 190, 10, 10.1016/j.jweia.2019.03.031 Liu, 2018, An alternative algorithm of tunnel piston effect by replacing three-dimensional model with two-dimensional model, Build. Environ., 128, 55, 10.1016/j.buildenv.2017.11.022 Martins, 2015, Deposition of aerosol particles from a subway microenvironment in the human respiratory tract, J. Aerosol Sci., 90, 103, 10.1016/j.jaerosci.2015.08.008 Martins, 2015, Exposure to airborne particulate matter in the subway system, Sci. Total Environ., 511, 711, 10.1016/j.scitotenv.2014.12.013 Moreno, 2014, Subway platform air quality: assessing the influences of tunnel ventilation, train piston effect and station design, Atmos. Environ., 92, 461, 10.1016/j.atmosenv.2014.04.043 Moreno, 2017, The effect of ventilation protocols on airborne particulate matter in subway systems, Sci. Total Environ., 584, 1317, 10.1016/j.scitotenv.2017.02.003 Morsi, 1972, An investigation of particle trajectories in two-phase flow systems, J. Fluid Mech., 55, 193, 10.1017/S0022112072001806 Mugica-Álvarez, 2012, Concentrations and properties of airborne particles in the Mexico City subway system, Atmos. Environ., 49, 284, 10.1016/j.atmosenv.2011.11.038 Murruni, 2009, Concentrations and elemental composition of particulate matter in the Buenos Aires underground system, Atmos. Environ., 43, 4577, 10.1016/j.atmosenv.2009.06.025 Nieuwenhuijsen, 2007, Levels of particulate air pollution, its elemental composition, determinants and health effects in metro systems, Atmos. Environ., 41, 7995, 10.1016/j.atmosenv.2007.08.002 Niu, 2018, Numerical simulation of the Reynolds number effect on the aerodynamic pressure in tunnels, J. Wind Eng. Ind. Aerod., 173, 187, 10.1016/j.jweia.2017.12.013 Olofsson, 2009, Towards a model for the number of airborne particles generated from a sliding contact, Wear, 267, 2252, 10.1016/j.wear.2009.05.002 Poussou, 2010, Flow and contaminant transport in an airliner cabin induced by a moving body: model experiments and CFD predictions, Atmos. Environ., 44, 2830, 10.1016/j.atmosenv.2010.04.053 Querol, 2012, Variability of levels and composition of PM 10 and PM 2.5 in the Barcelona metro system, Atmos. Chem. Phys., 12, 5055, 10.5194/acp-12-5055-2012 Raut, 2009, Link between aerosol optical, microphysical and chemical measurements in an underground railway station in Paris, Atmos. Environ., 43, 860, 10.1016/j.atmosenv.2008.10.038 Ren, 2019, Study on the subway environment induced by moving train using Gaussian distributed momentum source theory method, Indoor Built Environ., 28, 1083, 10.1177/1420326X18820473 Ripanucci, 2006, Dust in the underground railway tunnels of an Italian town, J. Occup. Environ. Hyg., 3, 16, 10.1080/15459620500444004 Salma, 2009, Properties and sources of individual particles and some chemical species in the aerosol of a metropolitan underground railway station, Atmos. Environ., 43, 3460, 10.1016/j.atmosenv.2009.04.042 Salma, 2007, Time-resolved mass concentration, composition and sources of aerosol particles in a metropolitan underground railway station, Atmos. Environ., 41, 8391, 10.1016/j.atmosenv.2007.06.017 Seaton, 2005, The London Underground: dust and hazards to health, Occup. Environ. Med., 62, 355, 10.1136/oem.2004.014332 Shen, 2019, Commuter exposure to particulate matters in four common transportation modes in Nanjing, Build. Environ., 156, 156, 10.1016/j.buildenv.2019.04.018 Sitzmann, 1999, Characterisation of airborne particles in London by computer-controlled scanning electron microscopy, Sci. Total Environ., 241, 63, 10.1016/S0048-9697(99)00326-5 Sundh, 2009, Wear rate testing in relation to airborne particles generated in a wheel–rail contact, Lubric. Sci., 21, 135, 10.1002/ls.80 Wahlström, 2009, A disc brake test stand for measurement of airborne wear particles, Lubric. Sci., 21, 241, 10.1002/ls.87 Wilcox, 2006 Wu, 2014, The dynamics of the body motion induced wake flow and its effects on the contaminant dispersion, Build. Environ., 82, 63, 10.1016/j.buildenv.2014.08.003 Xue, 2014, Numerical investigation of unsteady airflow in subway influenced by piston effect based on dynamic mesh, Tunn. Undergr. Space Technol., 40, 174, 10.1016/j.tust.2013.10.004 Yang, 2018, Flow structure and aerodynamic behavior evolution during train entering tunnel with entrance in crosswind, J. Wind Eng. Ind. Aerod., 175, 229, 10.1016/j.jweia.2018.01.018 Ye, 2010, Investigation of indoor environmental quality in Shanghai metro stations, China, Environ. Monit. Assess., 167, 643, 10.1007/s10661-009-1080-9 Zarnaghsh, 2019, A numerical study of the train-induced unsteady airflow in a tunnel and its effects on the performance of jet fans, J. Wind Eng. Ind. Aerod., 187, 1, 10.1016/j.jweia.2019.01.012 Zhang, 2017, Mathematical modeling and sensitive analysis of the train-induced unsteady airflow in subway tunnel, J. Wind Eng. Ind. Aerod., 171, 67, 10.1016/j.jweia.2017.09.005 Zhang, 2006, Experimental measurements and numerical simulations of particle transport and distribution in ventilated rooms, Atmos. Environ., 40, 3396, 10.1016/j.atmosenv.2006.01.014 Zhang, 2007, Comparison of the Eulerian and Lagrangian methods for predicting particle transport in enclosed spaces, Atmos. Environ., 41, 5236, 10.1016/j.atmosenv.2006.05.086