Numerical Study of Turbulent Channel Flow over Surfaces with Variable Spanwise Heterogeneities: Topographically-driven Secondary Flows Affect Outer-layer Similarity of Turbulent Length Scales
Tóm tắt
Từ khóa
Tài liệu tham khảo
Raupach, M.R., Antonia, R.A., Rajagopalan, S.: Rough-wall turbulent boundary layers. Appl. Mech. Rev. 44, 1–25 (1991)
Anderson, W.: Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations. J. Fluid Mech. 789, 567–588 (2016)
Grass, A.J.: Structural features of turbulent flow over smooth and rough boundaries. J. Fluid Mech. 50, 233 (1971)
Townsend, A.A.: The structure of turbulent shear flow. Cambridge University Press, Cambridge (1976)
Krogstad, P.Å., Antonia, R.A., Browne, L.W.B.: Comparison between rough- and smooth-wall turbulent boundary layers. J. Fluid Mech. 245, 599–617 (1992)
Wu, Y., Christensen, K.T.: Spatial structure of a turbulent boundary layer with irregular surface roughness. J. Fluid Mech. 655, 380–418 (2010)
Ganapathisubramani, B., Longmire, E.K., Marusic, I.: Characteristics of vortex packets in turbulent boundary layers. J. Fluid Mech. 478, 35–46 (2003)
Hutchins, N., Marusic, I.: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers. J. Fluid Mech. 579, 1–28 (2007)
Jacob, C., Anderson, W.: Conditionally averaged large-scale motions in the neutral atmospheric boundary layer: Insights for aeolian processes. Bound.-Lay. Meteorol. doi: 10.1007/s10546-016-0183-4 (2016)
Meinhart, C.D., Adrian, R.J.: On the existence of uniform momentum zones in a turbulent boundary layer. Phys. Fluids 7, 694–696 (1995)
Flack, K.A., Schultz, M.P.: Review of hydraulic roughness scales in the fully rough regime. J. Fluids Eng. 132(4), 041203 (2010)
Flack, K.A., Schultz, M.P., Connelly, J.S.: Examination of a critical roughness height for outer layer similarity. Phys. Fluids 19(9), 095104 (2007)
Castro, I.P.: Rough-wall boundary layers: mean flow universality. J. Fluid Mech. 585, 469–485 (2007)
Hong, J., Katz, J., Meneveau, C., Schultz, M.: Coherent structures and associated subgrid-scale energy transfer in a rough-wall channel flow. J. Fluid Mech. 712, 92–128 (2012)
Alfredsson, P.H., Orlu, R.: The diagnostic plot – a litmus test for wall-bounded turbulence data. Eur. J. Mech. B. Fluids 29, 403–406 (2010)
Alfredsson, P.H., Segalini, A., Orlu, R.: A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the outer peak. Phys. Fluids 23, 041702 (2011)
Wood, D.H.: The Growth of the Internal Layer Following a Step Change in Surface Roughness. Report T.N – FM 57, Dept. of Mech. Eng., Univ. of Newcastle, Australia (1981)
Antonia, R.A., Luxton, R.E.: The response of a turbulent boundary layer to a step change in surface roughness part i. smooth to rough. J. Fluid Mech. 48, 721–761 (1971)
Bou-Zeid, E., Meneveau, C., Parlange, M.B.: Large-eddy simulation of neutral atmospheric boundary layer flow over heterogeneous surfaces Blending height and effective surface roughness. Water Resour. Res. 40, W02505 (2004)
Bou-Zeid, E., Meneveau, C., Parlange, M.: A scale-dependent lagrangian dynamic model for large eddy simulation of complex turbulent flows. Phys. Fluids 17(2), 025105 (2005)
Fishpool, G.M., Lardeau, S., Leschziner, M.A.: Persistent non-homogeneous features in periodic channel-flow simulations. Flow Turbul. Combust. 83, 823–342 (2009)
Reynolds, R.T., Hayden, P., Castro, I.P., Robins, A.G.: Spanwise variations in nominally two-dimensional rough-wall boundary layers. Exp. Fluids 42, 311–320 (2007)
Mejia-Alvarez, R., Barros, J.M., Christensen, K.T.: Structural attributes of turbulent flow over a complex topography. In: Coherent Flow Structures at the Earth’s Surface, chapter 3, pp. 25–42. Wiley-Blackwell (2013)
Mejia-Alvarez, R., Christensen, K.T.: Wall-parallel stereo piv measurements in the roughness sublayer of turbulent flow overlying highly-irregular roughness. Phys. Fluids 25, 115109 (2013)
Barros, J.M., Christensen, K.T.: Observations of turbulent secondary flows in a rough-wall boundary layer. J. Fluid Mech. 748, 1 (2014)
Mejia-Alvarez, R., Christensen, K.T.: Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer. Phys. Fluids 22, 015106 (2010)
Nugroho, B., Hutchins, N., Monty, J.P.: Large-scale spanwise periodicity in a turbulent boundary layer induced by highly ordered and direction surface roughness. Int. J. Heat Fluid Flow 41, 90–102 (2013)
Nezu, I., Nakagawa, H.: Turbulence in Open-Channel Flows. Balkema Publishers, Rotterdam (1993)
Wang, Z.-Q., Cheng, N.-S.: Secondary flows over artificial bed strips. Adv. Water Resour. 28, 441–450 (2005)
Vermaas, D.A., Uijttewall, W.S.J., Hoitink, A.J.F.: Lateral transfer of streamwise momentum caused by a roughness transition across a shallow channel. Water Resour. Res. 47, W02530 (2011)
Willingham, D., Anderson, W., Christensen, K.T., Barros, J.: Turbulent boundary layer flow over transverse aerodynamic roughness transitions: induced mixing and flow characterization. Phys. Fluids 26, 025111–1–16 (2013)
Anderson, W., Barros, J.M., Christensen, K.T., Awasthi, A.: Numerical and experimental study of mechanisms responsible for turbulent secondary flows in boundary layer flows over spanwise heterogeneous roughness. J. Fluid Mech. 768, 316–347 (2015)
Prandtl, L.: Essentials of fluid dynamics. Blackie and Son, London (1952)
Brundrett, E., Baines, W.D.: The production and diffusion of vorticity in duct flow. J. Fluid Mech. 19, 375–394 (1964)
Perkins, H.J.: The formation of streamwise vorticity in turbulent flow. J. Fluid Mech. 44, 721–740 (1970)
Gessner, F.B.: The origin of secondary flow in turbulent flow along a corner. J. Fluid Mech. 58, 1–25 (1973)
Vanderwel, C., Ganapathisubramani, B.: Effects of spanwise spacing on large-scale secondary flows in rough-wall turbulent boundary layers. J. Fluid Mech. 774. doi: 10.1017/jfm.2015.292 (2015)
Jelly, T.O., Jung, S.Y., Zaki, T.A.: Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture. Phys. Fluids 26, 095102–1–27 (2014)
Lee, J., Jelly, T.O., Zaki, T.A.: Effect of reynolds number on turbulent drag reduction by superhydrophobic surface textures. Flow Turbul. Combust. 1–24 (2015)
Anderson, W.: An immersed boundary method wall model for high-reynolds number channel flow over complex topography. Int. J. Numer. Methods Fluids 71, 1588–1608 (2012)
Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid Mech. 32(1), 1–32 (2000)
Graham, J., Meneveau, C.: Modeling turbulent flow over fractal trees using renormalized numerical simulation: Alternate formulations and numerical experiments. Phys. Fluids 24, 125105 (2012)
Chester, S., Meneveau, C., Parlange, M.B.: Modelling of turbulent flow over fractal trees with renormalized numerical simulation. J. Comp. Phys. 225, 427–448 (2007)
Li, Q., Bou-Zeid, E., Anderson, W.: The impact and treatment of the gibbs phenomenon in immersed boundary method simulations of momentum and scalar transport. J. Comput. Phys. 310, 237–251 (2016)
Anderson, W., Chamecki, M.: Numerical study of turbulent flow over complex aeolian dune fields: The white sands national monument. Phys. Rev. E 89, 013005–1–14 (2014)
Fang, C., Sill, B.L.: Aerodynamic roughness length: Correlation with roughness elements. J. Wind Eng. Ind. Aerodyn. 41(1), 449–460 (1992)
Garratt, J.R.: The atmospheric boundary layer. Cambridge University Press (1994)
Zhu, X., Iungo, G.V., Leonardi, S., Anderson, W.: Parametric study of urban-like topographic statistical moments relevant to a priori modelling of bulk aerodynamic parameters. Bound.-Lay. Meteorol. doi: 10.1007/s10546-016-0198-x (2016)
Schultz, M.P., Flack, K.A.: Turbulent boundary layers on a systematically varied rough wall. Phys. Fluids 21(1), 015104 (2009)
Hutchins, N., Nickels, T.B., Marusic, I., Chong, M.S.: Hot-wire spatial resolution issues in wall-bounded turbulence. J. Fluid Mech. 635, 103–136 (2009)
Coceal, O., Dobre, A., Thomas, T.G., Belcher, S.E.: Structure of turbulent flow over regular arrays of cubical roughness. J. Fluid Mech. 589, 375–409 (2007)