Numerical Solutions of the Modified Burgers Equation by a Cubic B-spline Collocation Method

S. Kutluay1, Yusuf Uçar1, Nuri Murat Yağmurlu1
1Department of Mathematics, Inönü University, Malatya, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bateman, H.: Some recent researches on the motion of fluids. Mon. Weather Rev. 43, 163–170 (1915)

Mittal, R.C., Jain, R.K.: Numerical solutions of nonlinear Burgers equation with modified cubic B-splines collocation method. Appl. Math. Comput. 218, 7839–7855 (2012)

Benton, E., Platzman, G.W.: A table of folutions of the one-dimensional Burgers equations. Q. Appl. Math. 30, 195–212 (1972)

Miller, E.L.: Predictor-corrector studies of Burger’s model of turbulent flow, M. S. Thesis, University of Delaware, Newark (1966)

Dag, I., Irk, D., Sahin, A.: B-spline collocation methods for numerical solutions of the Burgers equation. Math. Probl. Eng. 2005(5), 521–538 (2005)

Ramadan, M.A., El-Danaf, T.S.: Numerical treatment for the modified burgers equation. Math. Comput. Simul. 70, 90–98 (2005)

Ramadan, M.A., El-Danaf, T.S., Abd Alaal, F.E.I.: A numerical solution of the Burgers equation using septic B-splines. Chaos, Solitons Fractals 26, 795–804 (2005)

Saka, B., Dag, I.: A numerical study of the Burgers equation. J. Frankl. Inst. 345, 328–348 (2008)

Irk, D.: Sextic B-spline collocation method for the modified Burgers equation. Kybernetes 38(9), 1599–1620 (2009)

Temsah, R.S.: Numerical solutions for convection-diffusion equation using El-Gendi method. Commun. Nonlinear Sci. Numer. Simul. 14, 760–769 (2009)

Griewank, A., El-Danaf, T.S.: Efficient accurate numerical treatment of the modified Burgers equation. Appl. Anal. 88(1), 75–87 (2009)

Bratsos, A.G.: An implicit numerical scheme for the modified Burgers equation, in HERCMA 2009 (9 $$^{\text{ o }}$$ o Hellenic-European conference on computer mathematics and its applications, pp. 24–26 September 2009, Athens

Bratsos, A.G.: A fourth-order numerical scheme for solving the modified Burgers equation. Comput. Math. Appl. 60, 1393–1400 (2010)

Bratsos, A.G., Petrakis, L.A.: An explicit numerical scheme for the modified Burgers equation. Int. J. Numer. Methods Biomed. Eng. 27, 232–237 (2011)

Roshan, T., Bhamra, K.S.: Numerical solutions of the modified Burgers equation by Petrov–Galerkin method. Appl. Math. Comput. 218, 3673–3679 (2011)

Mittal, R.C., Arora, G.: Numerical solution of the coupled viscous Burgers equation. Commun. Nonlinear Sci. Numer. Simulat. 16, 1304–1313 (2011)

Prenter, P.M.: Splines Variational Methods. John Wiley, New York (1975)

Rubin, S.G., Graves, R.A.: A Cubic spline approximation for problems in fluid mechanics, Nasa TR R-436, Washington, DC, 1975

Burden, R.L., Faires, J.D.: Numerical Analysis. Brooks/cole Cenaage Learning, Boston (2011)

Smith, G.D.: Numerical Solution of Partial Differential Equation: Finite Difference Method. Learendom Press, Oxford (1978)