Mô phỏng số của dòng chảy hỗn loạn sử dụng phương pháp không lưới dựa trên cách tân bình phương tối thiểu

International Journal of Civil Engineering - Tập 15 - Trang 77-87 - 2016
M. Naghian1, M. Lashkarbolok2, E. Jabbari1
1School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
2Department of Engineering, Golestan University, Golestan, Iran

Tóm tắt

Một phương pháp không lưới dựa trên cách tân bình phương tối thiểu được sử dụng trong mô phỏng số của dòng chảy hỗn loạn. Phương pháp đề xuất không cần tích phân, được vector hóa và có ma trận xác định dương thưa. Ở đây, mô hình k–ε chuẩn được sử dụng để mô phỏng dòng chảy hỗn loạn. Một công thức ma trận được minh họa mà có thể dễ dàng mở rộng cho các mô hình hỗn loạn khác. Ba bài toán chuẩn được giải quyết và kết quả được so sánh với tài liệu hiện có.

Từ khóa

#mô phỏng số #dòng chảy hỗn loạn #phương pháp không lưới #k–ε model #công thức ma trận

Tài liệu tham khảo

Nezu I, Rodi W (1986) Open-channel flow measurements with a laser Doppler anemometer. J Hydraul Eng 112(5):335–355 Tominaga A, Nezu I, Ezaki K, Nakagawa H (1989) Three-dimensional turbulent structure in straight open channel flows. J Hydraul Res 27(1):149–173 Spalart PR, Watmuff JH (1993) Experimental and numerical study of a turbulent boundary layer with pressure gradients. J Fluid Mech 249:337–371 Pagliara S, Roshni T, Palermo M (2015) Energy dissipation over large-scale roughness for both transition and uniform flow conditions. Int J Civil Eng 13(3A):341–346 Kazemi F, Khodashenas SR, Sarkardeh H (2016) Experimental study of pressure fluctuation in stilling basins. Int J Civil Eng 14(1A):1–9 Moser RD, Kim J, Mansour NN (1999) Direct numerical simulation of turbulent channel flow up to Re = 590. Phys Fluids 11(4):943–945 Leriche E (2006) Direct numerical simulation in a lid-driven cubical cavity at high Reynolds number by a Chebyshev spectral method. J Sci Comput 27(1–3):335–345 Kavianpour MR, Rajabi E (2012) Optimum algorithm for channel flow analysis in direct numerical simulation method. Int J Civil Eng 10(4):337–344 Moeng CH (1984) A large-eddy-simulation model for the study of planetary boundary-layer turbulence. J Atmos Sci 41(13):2052–2062 Chung D, Pullin DI (2009) Large-eddy simulation and wall modelling of turbulent channel flow. J Fluid Mech 631:281–309 Gravemeier V, Gee MW, Kronbichler M, Wall WA (2010) An algebraic variational multiscale–multigrid method for large eddy simulation of turbulent flow. Comput Methods Appl Mech Eng 199(13):853–864 Fard MG, Yeganeh-Bakhtiary A, Cheng L (2005) Numerical simulation of steady current below offshore pipeline near plane boundary. Int J Civil Eng 3(1):47 Fedoseyev AI (2001) A regularization approach to solving the Navier–Stokes equations for problems with boundary layer. In: Proc Eighth Int Symp on Computational Fluid Dynamics 1999, pp 317–324) Hajivalie FA, Yeganeh Bakhtiary A (2011) Numerical simulation of the interaction of a broken wave and a vertical breakwater. Int J Civil Eng 9(1):71 Kuzmin D, Mierka O, Turek S (2007) On the implementation of the k–ε turbulence model in incompressible flow solvers based on a finite element discretisation. Int J Comput Sci Math 1(2):193–206 Singh S (2009) k–ε Modeling using modified nodal integral method. Nucl Eng Des 239(7):1314–1322 Arzani H, Afshar MH (2006) Solving Poisson’s equations by the discrete least square meshless method. WIT Trans Model Simul 42:23–31 Afshar MH, Lashckarbolok M (2008) Collocated discrete least-squares (CDLS) meshless method: Error estimate and adaptive refinement. Int J Numer Meth Fluids 56(10):1909–1928 Firoozjaee AR, Afshar MH (2011) Steady-state solution of incompressible Navier–Stokes equations using discrete least-squares meshless method. Int J Numer Meth Fluids 67(3):369–382 Lashckarbolok M, Jabbari E (2012) Collocated discrete least squares (CDLS) meshless method for the stream function-vorticity formulation of 2D incompressible Navier–Stokes equations. Scientia Iranica 19(6):1422–1430 Lashckarbolok M, Jabbari E (2013) Collocated discrete least squares (CDLS) meshless method for the simulation of power-law fluid flows. Scientia Iranica 20(2):322–328 Lashckarbolok M, Jabbaria E, Vuikb K (2014) A node enrichment strategy in collocated discrete least squares meshless method for the solution of generalized Newtonian fluid flow. Sci Iran 21(1):1–10 Liu GR (2003) Mesh free methods: moving beyond the finite element method. CRC Press, Boca Raton Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin Koseff JR, Street RL (1984) The lid-driven cavity flow: a synthesis of qualitative and quantitative observations. J Fluids Eng 106(4):390–398 Ghia UKNG, Ghia KN, Shin CT (1982) High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J Comput Phys 48(3):387–411 Petry AP, Awruch AM (2006) Large eddy simulation of three-dimensional turbulent flows by the finite element method. J Braz Soc Mech Sci Eng 28(2):224–232 Iliescu T, Fischer P (2002) Large eddy simulation of turbulent channel flows by the rational LES model. Phys Fluids 15:3036–3047 Larsson J (2006) Towards large eddy simulation of boundary layer flows at high Reynolds number: statistical modeling of the inner layer, Doctoral dissertation, University of Waterloo Kim J, Kline SJ, Johnston JP (1980) Investigation of a reattaching turbulent shear layer: flow over a backward-facing step. J Fluids Eng 102(3):302–308