Numerical Simulation of Single Aluminum Particle Combustion (Review)
Tóm tắt
Từ khóa
Tài liệu tham khảo
I. Glassman, “Metal combustion processes,” Preprint No. 938-59, American Rocket Society, New York (1959).
T. A. Brzustowski and I. Glassman, “Spectroscopic investigation of metal combustion,” in: H. Wolfhard, I. Glassman, and L. Green, Jr. (eds.) Heterogeneous Combustion, Academic Press, New York (1964), pp. 41–74.
C. K. Law, “A simplified theoretical model for the vapor-phase combustion of metal particles,” Combust. Sci. Technol., 7, 197–212 (1973).
S. R. Turns, S. C. Wong, and E. Ryba, “Combustion of aluminum-based slurry agglomerates,” Combust. Sci. Technol., 54, 299–318 (1987).
K. P. Brooks and M. W. Beckstead, “Dynamics of aluminum combustion,” J. Propul. Power, 11, No.4, 769–780 (1995).
R. Bhatia and W. A. Sirignano, “Metal particle combustion with oxide condensation,” submitted to Combust. Sci. Technol. (1993).
M. K. King, “Modeling of single particle aluminum combustion in CO2/N2 atmospheres,” in: Proc. 17th (Int. on Combustion, The Combustion Institute, Pittsburgh (1979), pp. 1317–1328.
V. M. Kudryavtsev, A. V. Sukhov, A. V. Voronetskii, and A. P. Shpara, “High-pressure combustion of metals (three-zone model),” Combust., Expl., Shock Waves, 15, No.6, 731–737 (1979).
P. F. Pokhil, A. F. Belyayev, Yu. V. Frolov, et al., Combustion of Powdered Metals in Active Media [in Russian], Nauka, Moscow (1972). [See also English translation FTD-MT-24-551-73 (1972).]
Yu. V. Frolov, P. F. Pokhil, and V. S. Logachev, “Ignition and combustion of powdered aluminum in high-temperature gaseous media and in a composition of heterogeneous condensed systems,” Combust., Expl., Shock Waves, 8, No.2, 168–187 (1972).
V. M. Gremyachkin, A. G. Istratov, and O. I. Leipunskii, “Effect of immersion in a flow on metal-drop combustion,” Combust., Expl., Shock Waves 15, No.1, 26–29 (1979).
V. M. Gremyachkin, A. G. Istratov, and O. I. Leipunskii, “Model for the combustion of metal droplets,” Combust., Expl., Shock Waves, 11, No.3, 313–318 (1975).
V. A. Babuk, V. P. Belov, and G. G. Shelukhin, “Combustion of aluminum particles in composite condensed systems under low and high pressures,” Combust., Expl., Shock Waves, 17, No.3, 264–267 (1981).
Y. Liang and M. W. Beckstead, “Numerical simulation of quasi-steady, single aluminum particle combustion in air,” in: Proc. of the 36th Aerospace Sciences Meeting (Reno, January 1998), AIAA No. Paper 98-0254 (1998).
Y. Liang and M. W. Beckstead, “Numerical simulation of unsteady, single aluminum particle combustion in air,” in: Proc. of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Cleveland, July 1998), AIAA Paper No. 98-3825 (1998).
J. F. Widener and M. W. Beckstead, “Aluminum combustion modeling in solid propellant combustion products,” ibid., AIAA Paper No. 98-3824.
J. F. Widener, Y. Liang, and M. W. Beckstead, “Aluminum combustion modeling in solid propellant environments,” in: Proc. of the 35th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. (Los Angeles, June 1999), AIAA Paper No. 98-0449 (1998).
P. Bucher, R. A. Yetter,, F. L. Dryer, et al., “Observations on aluminum particles burning in various oxidizers,” in: Proc. of the 33rd JANNAF Combustion Meeting, Vol. II, CPIA Pub. No. 653, Laurel (1996), pp. 449–458.
R. J. Kee, G. Dixon-Lewis, J. Warnatz, et al., “A Fortran computer code package for the evaluation of gas-phase multicomponent transport properties,” SAND86-8246, Sandia National Lab., Albuquerque (1992).
P. Bucher, R. A. Yetter, F. L. Dryer, et al., “PLIF species and ratiometric temperature measurements of aluminum particle combustion in O2, CO2, and N2O oxidizers, and comparison with model calculations,” in: Proc. 27th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh (1998), pp. 2421–2429.
P. Bucher, R. A. Yetter, F. L. Dryer, et al., “Aluminum particle gas-phase flame structure,” in: Proc. of the 34th JANNAF Combustion Meeting, Vol. II, CPIA Pub. No. 662, Laurel (1997), pp. 295–305.
P. Bucher, R. A. Yetter, and F. L. Dryer, “Flame structure measurement of single, isolated aluminum particles burning in air,” in: Proc. of the 26 th (Int.) Symp. on Combustion, Naples, Italy, July 28–August 2 (1996), pp. 2–25.
A. C. Zettlemoyer, Nucleation, Marcel Dekker Inc., New York (1969).
S. E. Olsen and M. W. Beckstead, “Burn time measurements of single aluminum particles in steam and carbon dioxide mixtures,” J. Propul. Power, 12, No.4, 662–671 (1996).
S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, New York (1980).
T. R. Kalra and P. H. T. Uhlherr, “Properties of bluff body wakes,” in: Proc. of the 4th Australian. Conference on Hydraulics and Fluid Mechanics, Melbourne, Australia (1971), pp. 8–12.
E. L. Dreizin, “On the mechanism of asymmetric aluminum particle combustion,” Combust. Flame, 117, 841–850 (1999).
J. L. Prentice and L. S. Nelson, “Differences between the combustion of aluminum particles in air and oxygen-argon mixtures,” J. Electrochem. Soc., 115, 809–812 (1968).
A. Davis, “Solid propellants: The combustion of particles of metal ingredients,” Combust. Flame, 7, 359–367 (1963).
K. O. Hartman, “Ignition and combustion of aluminum particles in propellant flame gases,” in: Proc. of the 8th JANNAF Combustion Meeting, Vol. 1 (1971), pp. 1–24.