Numerical Modeling of the Interactions of Oil, Marine Snow, and Riverine Sediments in the Ocean

Journal of Geophysical Research: Oceans - Tập 123 Số 8 - Trang 5388-5405 - 2018
Anusha L. Dissanayake1,2, Adrian Burd1, Kendra L. Daly3, Simone Francis4, Uta Passow4
1Department of Marine Sciences, University of Georgia, Athens, GA, USA
2RPS ASA South Kingstown RI USA
3College of Marine Science, University of South Florida, St. Petersburg, FL, USA
4Marine Science Institute, University of California, Santa Barbara, CA, USA

Tóm tắt

AbstractNatural or spilled oil in the ocean can interact with marine snow and sediment from riverine sources and form Marine Oil Snow (MOS) aggregates including aggregates consisting of phytoplankton, detritus, and feces. Such aggregates have a fractal structure and can transport oil from the surface layers to greater depths in the ocean, eventually settling on the seafloor. In recent studies of the Deepwater Horizon and IXTOC‐1 oil spills in the Gulf of Mexico, this process was identified as one of the main mechanisms for transporting oil vertically in the water column. We have adapted a stochastic, one‐dimensional numerical model that uses coagulation theory to simulate MOS formation and sinking in the ocean and predict the time evolution of physical properties and spatial distribution of MOS. Here we present the model development, calibration, and validation with measured MOS field data in the Gulf of Mexico during the Deepwater Horizon spill. We use a sensitivity analysis to identify critical parameters, and suggest future model improvements and areas where further experimental investigation is needed to improve our understanding of MOS formation and sedimentation. The model can be used during response and planning activities associated with oil spills in the marine environments.

Từ khóa


Tài liệu tham khảo

10.4319/lo.1990.35.7.1415

10.1016/0079-6611(88)90053-5

10.1016/j.jher.2011.03.002

10.1371/journal.pone.0132341

10.1021/es010982n

10.1146/annurev.marine.010908.163904

10.1006/jcis.1998.5667

10.1016/S0043-1354(02)00379-2

10.1021/es5046524

10.1016/j.ancene.2016.01.006

Daly K.L.(2018).SIPPER: Oil-Marine Snow-Mineral Aggregate Interactions and Sedimentation during the 2010 Deepwater Horizon Oil Spill in the northeastern Gulf of Mexico from May-June 2010.https:/doi.org/10.7266/N779437K

10.1016/S0967-0637(99)00105-3

10.1007/s10652-018-9591-y

Friendlander S., 2000, Smoke, dust and haze: Fundamentals of aerosol dynamics

10.1021/es5042157

Giering S. L. C., 2017, The ecosystem baseline for particle flux in the northern Gulf of Mexico, Elementa: Science of the Anthropocene, 6

Gill A. E., 1982, Atmosphere‐ocean dynamics

10.1016/j.marpolbul.2013.12.024

10.1073/pnas.1612518114

10.1016/0967-0637(96)00030-1

10.1016/0198-0149(90)90038-W

10.1016/0967-0645(95)00010-N

10.1016/S0967-0637(00)00040-6

10.1021/es980251w

10.1016/S1353-2561(00)00042-6

10.5194/gmd-9-1455-2016

10.1016/S1353-2561(02)00117-2

10.1016/j.marenvres.2004.05.003

10.3354/meps11116

Lee K., 2002, Oil‐particle interactions in aquatic environments: Influence on the transport, fate, effect and remediation of oil spills, Spill Science and, Technology Bulletin, 8, 3

10.1016/j.watres.2003.11.010

10.1016/0043-1354(94)00186-B

10.4319/lo.1990.35.1.0130

10.1002/2015JC011062

10.3354/meps094207

10.3354/meps163063

10.1016/j.pocean.2016.11.002

Meakin P., 1998, Factals, scaling and growth far from equilibrium

10.1371/journal.pone.0070540

MOSSFA Report, 2014, Marine oil snow sedimentation and flocculent accumulation (MOSSFA) workshop

Norse E. A., 2010, Impacts, perception, and policy implications of the deepwater horizon oil and gas disaster. Environmental Law Reporter

10.1016/0021-9797(82)90317-4

Parker D., 1971, Floc breakup in turbulent flocculation processes, Journal of the Sanitary Engineering Division American Society of Civil Engineering, 98, 77

10.1016/j.dsr2.2014.10.001

10.1016/S0278-4343(00)00101-1

10.1016/j.marpolbul.2017.08.015

10.5670/oceanog.2016.76

10.1088/1748-9326/7/3/035301

10.1051/0004-6361/201117940

10.1002/lol2.10030

10.1016/j.envpol.2017.05.019

10.1021/acs.est.7b00450

10.5004/dwt.2010.1079

10.1016/S0967-0637(97)00028-9

Socolofsky S. A. Dissanayake A. L. Jun I. Gros J. Arey J. S. &Reddy C. M.(2015). Texas A&M Oilspill Calculator (TAMOC): Modeling suite for subsea spills.Proceedings of the 38th AMOP Technical Seminar on Environmental Contamination and Response 153–168.

Spaulding M. L. Bishnoi P. R. Anderson E. &Isaji T.(2000). An integrated model for prediction of oil transport from a deep water blowout.Proceedings of the 23 Arctic and Marine Oilspill Program (AMOP) Technical Seminar(1077 pp.). Canada: Environment Canada.

Spaulding M. Mendelsohn D. Crowley D. Li Z. &Bird A.(2015). Draft technical reports for deepwater horizon water column injury assessment: Application of oilmap deep to the deepwater horizon blowout. Prepared for national oceanic and atmospheric administration (NOAA) by RPS ASA South Kingstown RI USA 29 September (Administrative Record dwh‐ar0285366).

10.1016/j.dsr.2004.03.001

10.1016/j.watres.2005.02.007

10.1021/es035467z

10.1016/j.marpolbul.2017.10.059

10.1016/j.marpolbul.2016.09.046

10.1039/c2sm25883h

10.1039/b904829b

10.1016/j.pocean.2014.08.005

10.1073/pnas.1414873111

Von Smoluchowski M., 1916, Drei vortrage uber diffusion. Brownsche bewegung und koagulation von kolloidteilchen, Zeitschrift für Physik, 17, 557

10.1016/j.marpolbul.2015.08.023

10.1073/pnas.1118029109

10.3354/ame01658

10.1073/pnas.1513156113

10.1080/00221689709498401

10.1017/S0022112009007332

10.1016/j.marpolbul.2010.05.014

10.1016/j.marpolbul.2016.02.057

10.1051/0004-6361:200809921