Numerical Investigation on Pulsating Hydromagnetic Flow of Chemically Reactive Micropolar Nanofluid in a Channel with Brownian Motion, Thermophoresis and Ohmic Heating
Tóm tắt
This work examines the behavior of pulsating hydromagnetic flow of micropolar nanofluid in a channel with slip effects by employing Buongiorno’s nanofluid model. The effects of Brownian motion, thermophoresis, and Joule heating (Ohmic heating) are taken into account. A perturbation approach is applied to transform the governing partial differential equations (PDEs) into ordinary differential equations (ODEs) and then tackled numerically by adopting the shooting approach via Runge-Kutta fourth-order method. The impacts of velocity, microrotation, temperature, and nanoparticle concentration are depicted graphically with numerous standards of physical parameters. The heat and mass transfer rates are considered and presented through a table. The obtained results reveal that the velocity profiles are diminished by accelerating the Hartmann number and coupling parameter while the velocity is increased by escalating the slip parameter and gyration parameter. The influences of microrotation is increased near to the top wall and diminished near to the bottom wall for intensifying the values of the gyration parameter. The temperature of nanofluid is amplifying with an increment of thermophoresis and Brownian motion parameters while it is diminishing with an enhancement of radiation parameter and magnetic field. Pointedly, the concentration of nanofluid is decreasing with the increase of chemical reaction parameter and thermophoresis parameter. The heat transfer rate is rising due to boosts up the values of the Brownian motion, thermophoresis, and viscous dissipation. Therefore, this analysis is significant in the field of pressure surges, food processing systems, biomedical engineering, cancer therapeutic, and nano-drug delivery in the arteries.
Tài liệu tham khảo
citation_journal_title=Indiana Univ. Math. J.; citation_title=Theory of Micropolar Fluids; citation_author=AC Eringen; citation_volume=16; citation_publication_date=1966; citation_pages=1-18; citation_doi=10.1512/iumj.1967.16.16001; citation_id=CR1
citation_journal_title=Int. J. Eng. Sci.; citation_title=Theory of thermo-microstretch fluids and bubbly liquids; citation_author=AC Eringen; citation_volume=28; citation_publication_date=1990; citation_pages=133-143; citation_doi=10.1016/0020-7225(90)90063-O; citation_id=CR2
citation_journal_title=Eur. J. Mech. B/Fluids.; citation_title=Pulsating flow of an incompressible micropolar fluid between permeable beds with an inclined uniform magnetic field; citation_author=P Bitla, TKV Iyengar; citation_volume=48; citation_publication_date=2014; citation_pages=174-182; citation_doi=10.1016/j.euromechflu.2014.06.002; citation_id=CR3
citation_journal_title=Heat Transf. - Asian Res.; citation_title=Non-darcian unsteady flow of a micropolar fluid over a porous stretching sheet with thermal radiation and chemical reaction; citation_author=S Srinivas, PBA Reddy, BSRV Prasad; citation_volume=44; citation_publication_date=2015; citation_pages=172-187; citation_doi=10.1002/htj.21090; citation_id=CR4
citation_journal_title=J. Mol. Liq.; citation_title=Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective boundary condition; citation_author=M Ramzan, M Farooq, T Hayat, JD Chung; citation_volume=221; citation_publication_date=2016; citation_pages=394-400; citation_doi=10.1016/j.molliq.2016.05.091; citation_id=CR5
citation_journal_title=Int. J. Appl. Comput. Math.; citation_title=Outcomes of non-uniform heat source/sink on micropolar nanofluid flow in presence of slip boundary conditions; citation_author=A Sarkar, PK Kundu; citation_volume=3; citation_publication_date=2017; citation_pages=801-812; citation_doi=10.1007/s40819-017-0383-8; citation_id=CR6
citation_journal_title=Eur. Phys. J. Plus.; citation_title=A novel study of radiative flow involving micropolar nanoliquid from a shrinking/stretching curved surface including blood gold nanoparticles; citation_author=KS Nisar, U Khan, A Zaib, I Khan, A Morsy; citation_volume=135; citation_publication_date=2020; citation_pages=1-19; citation_doi=10.1140/epjp/s13360-020-00830-w; citation_id=CR7
Rana, B.M.J., Arifuzzaman, S.M., Islam, S., Reza-E-Rabbi, S., Al-Mamun, A., Mazumder, M., Roy, K.C., Khan, M.S.: Swimming of microbes in blood flow of nano-bioconvective Williamson fluid. Therm. Sci. Eng. Prog. 25, 101018 (2021)
Shah, Z., Khan, A., Khan, W., Kamran Alam, M., Islam, S., Kumam, P., Thounthong, P.: Micropolar gold blood nanofluid flow and radiative heat transfer between permeable channels. Comput. Methods Programs Biomed. 186, 105197 (2020)
citation_journal_title=J. King Saud Univ. - Sci.; citation_title=Explicit finite difference analysis of an unsteady MHD flow of a chemically reacting Casson fluid past a stretching sheet with Brownian motion and thermophoresis effects; citation_author=S Reza-E-Rabbi, SM Arifuzzaman, T Sarkar, MS Khan, SF Ahmmed; citation_volume=32; citation_publication_date=2020; citation_pages=690-701; citation_doi=10.1016/j.jksus.2018.10.017; citation_id=CR10
Abdal, S., Habib, U., Siddique, I., Akgül, A., Ali, B.: Attribution of multi-slips and bioconvection for micropolar nanofluids transpiration through porous medium over an extending sheet with PST and PHF Conditions. Int. J. Appl. Comput. Math. 7(6), 1–21 (2021)
citation_journal_title=J. Mol. Liq.; citation_title=MHD flow of a variable viscosity nanofluid over a radially stretching convective surface with radiative heat; citation_author=OD Makinde, F Mabood, WA Khan, MS Tshehla; citation_volume=219; citation_publication_date=2016; citation_pages=624-630; citation_doi=10.1016/j.molliq.2016.03.078; citation_id=CR12
citation_journal_title=J. Porous Media.; citation_title=Hydromagnetic flow of a nanofluid in a porous channel with expanding or contracting walls; citation_author=S Srinivas, A Vijayalakshmi, TR Ramamohan, A Subramanyam Reddy; citation_volume=17; citation_publication_date=2014; citation_pages=953-967; citation_doi=10.1615/JPorMedia.v17.i11.20; citation_id=CR13
citation_journal_title=Appl. Math. Model.; citation_title=MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction; citation_author=C Zhang, L Zheng, X Zhang, G Chen; citation_volume=39; citation_publication_date=2015; citation_pages=165-181; citation_doi=10.1016/j.apm.2014.05.023; citation_id=CR14
citation_journal_title=Comput. Methods Programs Biomed.; citation_title=Computer simulation of MHD blood conveying gold nanoparticles as a third grade non-Newtonian nanofluid in a hollow porous vessel; citation_author=M Hatami, J Hatami, DD Ganji; citation_volume=113; citation_publication_date=2014; citation_pages=632-641; citation_doi=10.1016/j.cmpb.2013.11.001; citation_id=CR15
Choi, S. U. S., Eastman, J.: Enhancing thermal conductivity of fluids with nanoparticles. In American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED. pp. 99-105 (1995)
citation_journal_title=J. Heat Transfer.; citation_title=Convective transport in nanofluids; citation_author=J Buongiorno; citation_volume=128; citation_publication_date=2006; citation_pages=240-250; citation_doi=10.1115/1.2150834; citation_id=CR17
citation_journal_title=Int. J. Heat Mass Transf.; citation_title=Forced convection in a parallel-plate channel occupied by a nanofluid or a porous medium saturated by a nanofluid; citation_author=DA Nield, AV Kuznetsov; citation_volume=70; citation_publication_date=2014; citation_pages=430-433; citation_doi=10.1016/j.ijheatmasstransfer.2013.11.016; citation_id=CR18
Elelamy, A.F., Elgazery, N.S., Ellahi, R.: Blood flow of MHD non-Newtonian nanofluid with heat transfer and slip effects: application of bacterial growth in heart valve. Int. J. Numer. Methods Heat Fluid Flow 30, 4883–4908 (2020)
citation_journal_title=SN Appl. Sci.; citation_title=MHD effect on unsteady flow of tangent hyperbolic nano-fluid past a moving cylinder with chemical reaction; citation_author=PP Gharami, S Reza-E-Rabbi, SM Arifuzzaman, MS Khan, T Sarkar, SF Ahmmed; citation_volume=2; citation_publication_date=2020; citation_pages=1-16; citation_doi=10.1007/s42452-020-3048-x; citation_id=CR20
citation_journal_title=J. Mol. Liq.; citation_title=Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution; citation_author=OD Makinde, IL Animasaun; citation_volume=221; citation_publication_date=2016; citation_pages=733-743; citation_doi=10.1016/j.molliq.2016.06.047; citation_id=CR21
Reza-E-Rabbi, S., Ahmmed, S.F., Arifuzzaman, S.M., Sarkar, T., Khan, M.S.: Computational modelling of multiphase fluid flow behaviour over a stretching sheet in the presence of nanoparticles. Eng. Sci. Technol. Int. J. 23, 605–617 (2020)
Ramesh, G.K., Roopa, G.S., Rauf, A., Shehzad, S.A., Abbasi, F.M.: Time-dependent squeezing flow of Casson-micropolar nanofluid with injection / suction and slip effects. Int. Commun. Heat Mass Transf. 126, 105470 (2021)
citation_journal_title=SN Appl. Sci.; citation_title=Numerical simulation of periodic MHD casson nanofluid flow through porous stretching sheet; citation_author=A Al-Mamun, SM Arifuzzaman, S Reza-E-Rabbi, US Alam, S Islam, MS Khan; citation_volume=3; citation_publication_date=2021; citation_pages=1-14; citation_doi=10.1007/s42452-021-04140-3; citation_id=CR24
Rajamani, S., Subramanyam Reddy, A.: Pulsating flow of electrically conducting couple stress nanofluid in a channel with ohmic dissipation and thermal radiation - Dynamics of blood. Proc. Inst. Mech. Eng. Part E J. Process. Mech. Eng. 235, 1895–1909 (2021)
citation_journal_title=Int. J. Appl. Comput. Math.; citation_title=Numerical investigation on convective flow of two-phase mhd dusty nanofluids over a wavy surface with brownian motion and thermophoresis effects; citation_author=G Kalpana, KR Madhura, SS Iyengar, MS Uma; citation_volume=5; citation_publication_date=2019; citation_pages=1-21; citation_doi=10.1007/s40819-019-0645-8; citation_id=CR26
Govindarajulu, K., Subramanyam Reddy, A.: Impacts of Joule heating and viscous dissipation on MHD pulsatile flow of third grade nanofluid in a channel. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. pp. 1-12 (2022)
citation_journal_title=J. Appl. Mech. Trans. ASME.; citation_title=Pulsatile flow in a porous channel; citation_author=CY Wang; citation_volume=38; citation_publication_date=1971; citation_pages=553-555; citation_doi=10.1115/1.3408822; citation_id=CR28
citation_journal_title=Int. J. Heat Mass Transf.; citation_title=Pulsatile flow in heated porous channel; citation_author=AR Bestman; citation_volume=25; citation_publication_date=1982; citation_pages=675-682; citation_doi=10.1016/0017-9310(82)90172-7; citation_id=CR29
Srinivas, S., Malathy, T., Subramanyam Reddy, A.: A note on thermal-diffusion and chemical reaction effects on MHD pulsating flow in a porous channel with slip and convective boundary conditions. J. King Saud. Univ. Eng. Sci. 28, 213–221 (2016)
Ghasemi, S.E., Hatami, M., Hatami, J., Sahebi, S.A.R., Ganji, D.D.: An efficient approach to study the pulsatile blood flow in femoral and coronary arteries by differential quadrature method. Phys. A Stat. Mech. Appl. 443, 406–414 (2016)
citation_journal_title=Nonlinear Anal. Model. Control.; citation_title=Pulsating flow of Casson fluid in a porous channel with thermal radiation, chemical reaction and applied magnetic field; citation_author=S Srinivas, CK Kumar, AS Reddy; citation_volume=23; citation_publication_date=2018; citation_pages=213-233; citation_doi=10.15388/NA.2018.2.5; citation_id=CR32
citation_journal_title=Int. J. Heat Mass Transf.; citation_title=Heat transfer to pulsatile flow in a channel; citation_author=G Radhakrishnamacharya, MK Maiti; citation_volume=20; citation_publication_date=1977; citation_pages=171-173; citation_doi=10.1016/0017-9310(77)90009-6; citation_id=CR33
citation_journal_title=Nonlinear Anal. Model. Control.; citation_title=Pulsating flow of an incompressible micropolar fluid between permeable beds; citation_author=P Bitla, TKV Iyengar; citation_volume=18; citation_publication_date=2013; citation_pages=399-411; citation_doi=10.15388/NA.18.4.13969; citation_id=CR34
citation_journal_title=J. Porous Media.; citation_title=Chemical reaction and radiation effects on mhd pulsatile flow of an oldroyd-b fluid in a porous medium with slip and convective boundary conditions; citation_author=T Malathy, S Srinivas, AS Reddy; citation_volume=20; citation_publication_date=2017; citation_pages=287-301; citation_doi=10.1615/JPorMedia.v20.i4.10; citation_id=CR35
Arifuzzaman, S.M., Khan, M.S., Al-Mamun, A., Reza-E-Rabbi, S., Biswas, P., Karim, I.: Hydrodynamic stability and heat and mass transfer flow analysis of MHD radiative fourth-grade fluid through porous plate with chemical reaction. J. King Saud Univ. Sci. 31, 1388–1398 (2019)
citation_journal_title=J. Mech. Med. Biol.; citation_title=Pulsatile flow and heat transfer of a magneto-micropolar fluid through a stenosed artery under the influence of body acceleration; citation_author=GC Shit, M Roy; citation_volume=11; citation_publication_date=2011; citation_pages=643-661; citation_doi=10.1142/S0219519411003909; citation_id=CR37
Kumar, C.K., Srinivas, S., Subramanyam Reddy, A.: MHD pulsating flow of Casson nanofluid in a vertical porous space with thermal radiation and joule heating. J. Mech. 36, 535–549 (2020)
Vasu, B., Dubey, A., Bég, O.A., Gorla, R.S.R.: Micropolar pulsatile blood flow conveying nanoparticles in a stenotic tapered artery: Non-Newtonian pharmacodynamic simulation. Comput. Biol. Med. 126, 104025 (2020)
citation_journal_title=Eur. Phys. J. Spec. Top.; citation_title=Insight into the dynamics of blood conveying alumina nanoparticles subject to Lorentz force, viscous dissipation, thermal radiation, Joule heating, and heat source; citation_author=G Venkatesan, AS Reddy; citation_volume=123; citation_issue=5; citation_publication_date=2021; citation_pages=1475-1485; citation_doi=10.1140/epjs/s11734-021-00052-w; citation_id=CR40
Rajkumar, D., Reddy, A.S.: Pulsating electrically conducting flow of Au/SWCNTs-blood micropolar nanofluid in a porous channel with Ohmic heating, thermal radiation. Phys. Scr. 96(12), 125233 (2021)
Govindarajulu, K., Reddy, A.S.: Magnetohydrodynamic pulsatile flow of third grade hybrid nanofluid in a porous channel with Ohmic heating and thermal radiation effects Magnetohydrodynamic pulsatile flow of third grade hybrid nanofluid in a porous channel with Ohmic heating and thermal r. Phys. Fluids. 34, 013105 (2022)
Padhi, S., Nayak, I.: Numerical study of unsteady MHD second grade fluid flow and heat transfer within porous channel. Int. J. Appl. Comput. Math. 7(6), 1–20 (2021)
citation_journal_title=J. Magn. Magn. Mater.; citation_title=Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model; citation_author=M Sheikholeslami, D Domiri Ganji, M Younus Javed, R Ellahi; citation_volume=374; citation_publication_date=2015; citation_pages=36-43; citation_doi=10.1016/j.jmmm.2014.08.021; citation_id=CR44
Hayat, T., Waqas, M., Shehzad, S.A., Alsaedi, A.: MHD stagnation point flow of Jeffrey fluid by a radially stretching surface with viscous dissipation and Joule heating. J. Hydrol. Hydromech. 63, 311–317 (2015)
Jamalabadi, M.Y.A., Daqiqshirazi, M., Nasiri, H., Safaei, M.R., Nguyen, T.K.: Modeling and analysis of biomagnetic blood Carreau fluid flow through a stenosis artery with magnetic heat transfer: a transient study. PLoS One 13(2), e0192138 (2018)
citation_journal_title=Math. Comput. Simul.; citation_title=Pulsatile flow and heat transfer of blood in an overlapping vibrating atherosclerotic artery: A numerical study; citation_author=GC Shit, S Maiti, M Roy, JC Misra; citation_volume=166; citation_publication_date=2019; citation_pages=432-450; citation_doi=10.1016/j.matcom.2019.06.015; citation_id=CR47
citation_journal_title=Heat Transf.; citation_title=Joule heating impacts on MHD pulsating flow of Au / CuO - blood Oldroyd - B nanofluid in a porous channel; citation_author=G Venkatesan; citation_volume=50; citation_issue=7; citation_publication_date=2021; citation_pages=7495-7513; citation_doi=10.1002/htj.22240; citation_id=CR48
citation_journal_title=Heat Mass Transf. und Stoffuebertragung.; citation_title=Pulsatile flow with heat transfer of dusty magnetohydrodynamic Ree-Eyring fluid through a channel; citation_author=HM Shawky; citation_volume=45; citation_publication_date=2009; citation_pages=1261-1269; citation_doi=10.1007/s00231-009-0502-0; citation_id=CR49
Hayat, T., Shaheen, U., Shafiq, A., Alsaedi, A., Asghar, S.: Marangoni mixed convection flow with Joule heating and nonlinear radiation. AIP Adv. 5(7), 077140 (2015)