Numerical Investigation of the Ventilated Cavitating Flow Around an Under-Water Vehicle Based on a Three-Component Cavitation Model

Journal of Hydrodynamics, Ser. B - Tập 22 - Trang 753-759 - 2010
Bin JI1, Xian-wu LUO1, Xiao-xing PENG2, Yao ZHANG1, Yu-lin WU1, Hong-yuan XU1
1State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China
2China Ship Scientific Research Center, Wuxi 214082, China

Tài liệu tham khảo

WOSNIK M., ARNDT R. E. A. Measurements in high void-fraction bubbly wakes created by ventilated supercavitation[C]. Proceedings of 6th International Symposium on Cavitation. Wageningen, The Netherlands, 2006. FRANC J., MICHEL J. Fundamentals of cavitation[M]. Dordrecht, The Netherlands: Springer, 2005, 193–221. KOPRIVA J., ARNDT R. E. A. and AMROMIN E. Improvement of hydrofoil performance by partial ventilated cavitation in steady flow and periodic gusts[J]. Journal of Fluids Engineering, 2008, 130(3): 31301. AMROMIN E., KOPRIVA J. and ARNDT R. E. A. et al. Hydrofoil drag reduction by partial cavitation[J]. Journal of Fluids Engineering, 2006, 128(5): 931–936. CHEN Xin, LU Chuan-jing and LI Jie et al. The wall effect on ventilated cavitating flows in closed cavitation tunnels[J]. Journal of Hydrodynamics, 2008, 20(5): 561–566. LEE Qi-tao, XUE Lei-ping and HE You-sheng. Experimental study of ventilated supercavities with a dynamics pitching model[J]. Journal of Hydrodynamics, 2008, 20(4): 456–460. LI Jie, LU Chuan-jing and HUANG Xuan. Calculation of added mass of a vehicle running with cavity[J]. Journal of Hydrodynamics, 2010, 22(3): 312–318. COUTIER-DELGOSHA O., REBOUD J. L. and DELANNOY Y. Numerical simulation of the unsteady behaviour of cavitating flows[J]. International Journal for Numerical Methods in Fluids, 2003, 42(5): 527–548. WANG G., OSTOJA S. M. Large eddy simulation of sheet/cloud cavitation on a NACA0015 hydrofoil[J]. Applied Mathematical Modeling, 2007, 31(3): 417–447. LUO Xian-wu, ZHANG Yao and PENG Jun-qi et al. Impeller inlet geometry effect on performance improvement for centrifugal pumps[J]. Journal of Mechanical Science and Technology, 2008, 22(10): 1971–1976. SENOCAK I., SHYY W. Interfacial dynamics-based modelling of turbulent cavitating flows, Part-1: Model development and steady-state computations[J]. International Journal for Numerical Methods in Fluids, 2004, 44(9): 975–995. SINGHAL A. K., ATHAVALE M. and LI H. et al. Mathematical basis and validation of the full cavitation model[J]. Journal of Fluids Engineering, 2002, 124(3): 617–624. KUNZ R. F., BOGER D. A. and STINEBRING D. R. et al. A preconditioned Navier-Stokes method for two-phase flows with application to cavitation prediction[J]. Computers and Fluids, 2000, 29(8): 849–875. MEJRI I., BAKIR F. and REY R. et al. Comparison of computational results obtained from a homogeneous cavitation model with experimental investigations of three inducers[J]. Journal of Fluids Engineering, 2006, 128(6): 1308–1323. ZWART P. J., GERBER A. G. and BELAMRI T. A Two-phase flow model for predicting cavitation dynamics[C]. Proceedings of International Conference on Multiphase Flow. Yokohama, Japan, 2004. TRAVIS J. An experimental study of a ventilated supercavitating vehicle[D]. Master Thesis, Minnesota, USA: University of Minnesota, 2003. CHEN Ying, LU Chuan-jing. A homogenous-equilibrium-model based numerical code for cavitation flows and evaluation by computation cases[J]. Journal of Hydrodynamics, 2008, 20(2): 186–194. JIA Li-ping, WANG Cong and WEI Ying-jie et al. Numerical simulation of artificial ventilated cavity[J]. Journal of Hydrodynamics, Ser. B, 2006, 18(3): 273–279.