Numerical Evaluation and Experimental Validation of Pressure Drops Across a Patient-Specific Model of Vascular Access for Hemodialysis
Tóm tắt
Từ khóa
Tài liệu tham khảo
Antiga, L., M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. Steinman. An image-based modeling framework for patient-specific computational hemodynamics. Med. Biol. Eng. Comput. 46(11):1097–1112, 2008.
Asif, A., C. Leon, D. Merrill, B. Bhimani, R. Ellis, M. Ladino, and F. N. Gadalean. Arterial steal syndrome: a modest proposal for an old paradigm. Am. J. Kidney Dis. 48(1):88–97, 2006. doi: 10.1053/j.ajkd.2006.03.077 .
Balay, S., K. Buschelman, V. Eijkhout, W. Gropp, D. Kaushik, M. Knepley, L. C. McInnes, B. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-10/03 - Revision 3.1, Argonne National Laboratory, 2010.
Benzi, M., G. H. Golub, and J. Liesen. Numerical solution of saddle point problems. Acta Numer. 14:1–137, 2005.
Botti, L. Gnuid, A dG–cG pressure-correction incompressible Navier–Stokes solver for hemodynamics, 2009. https://github.com/lorbot/Gnuid .
Botti, L., and D. A. Di Pietro. A pressure-correction scheme for convection-dominated incompressible flows with discontinuous velocity and continuous pressure. J. Comput. Phys. 230:572–585, 2011.
Caroli, A., S. Manini, L. Antiga, K. Passera, B. Ene-Iordache, S. Rota, G. Remuzzi, A. Bode, J. Leermakers, F. N. van de Vosse, R. Vanholder, M. Malovrh, J. Tordoir, and A. Remuzzi. Validation of a patient-specific hemodynamic computational model for surgical planning of vascular access in hemodialysis patients. Kidney Int., 2013. doi: 10.1038/ki.2013.188 .
Cezeaux, J., and A. van Grondelle. Accuracy of the inverse Womersley method for the calculation of hemodynamic variables. Ann. Biomed. Eng. 25(3):536–546, 1997.
Charonko, J., S. Karri, J. Schmieg, S. Prabhu, and P. Vlachos. In vitro, time-resolved PIV comparison of the effect of stent design on wall shear stress. Ann. Biomed. Eng. 37(7):1310–1321, 2009. doi: 10.1007/s10439-009-9697-y .
Cheung, S. C. P., K. K. L. Wong, G. H. Yeoh, W. Yang, J. Tu, R. Beare, and T. Phan. Experimental and numerical study on the hemodynamics of stenosed carotid bifurcation. Aust. Phys. Eng. Sci. Med. 33(4):319–328, 2010. doi: 10.1007/s13246-010-0050-4 .
Day, S. W., and J. C. McDaniel. PIV measurements of flow in a centrifugal blood pump: steady flow. J. Biomech. Eng. 127(2):244–253, 2005.
Day, S. W., and J. C. McDaniel. PIV measurements of flow in a centrifugal blood pump: time-varying flow. J. Biomech. Eng. 127(2):254–263, 2005.
Di Pietro, D. A., and A. Ern. Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier–Stokes equations. Math. Comp. 79:1303–1330, 2010.
Ford, M. D., H. N. Nikolov, J. S. Milner, S. P. Lownie, E. M. Demont, W. Kalata, F. Loth, D. W. Holdsworth,and D. A. Steinman. PIV-measured versus cfd-predicted flow dynamics in anatomically realistic cerebral aneurysm models. J. Biomech. Eng. 130(2):021–015, 2008. doi: 10.1115/1.2900724 .
Giridharan, G. A., C. Lederer, A. Berthe, L. Goubergrits, J. Hutzenlaub, M. S. Slaughter, R. D. Dowling, P. A. Spence, and S. C. Koenig. Flow dynamics of a novel counterpulsation device characterized by CFD and PIV modeling. Med. Eng. Phys. 33(10):1193–1202, 2011. doi: 10.1016/j.medengphy.2011.05.008 .
Gresho, P. M., and R. L. Sani. Incompressible Flow and the Finite Element Method, vol. 2, Chap. 3.13. New York: Wiley, pp. 704–707, 1998.
Guermond, J. L., P. Minev, and J. Shen. An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng. 195:6011–6045, 2006.
Guermond, J. L., and L. Quartapelle. On stability and convergence of projection methods based on pressure poisson equation. Int. J. Num. Methods Fluids 26:1039–1053, 1998.
Hariharan, P., M. Giarra, V. Reddy, S. W. Day, K. B. Manning, S. Deutsch, S. F. C. Stewart, M. R. Myers, M. R. Berman, G. W. Burgreen, E. G. Paterson, and R. A. Malinauskas. Multilaboratory particle image velocimetry analysis of the fda benchmark nozzle model to support validation of computational fluid dynamics simulations. J. Biomech. Eng. 133(4):041,002, 2011. doi: 10.1115/1.4003440 .
Hoi, Y., S. H. Woodward, M. Kim, D. B. Taulbee, and H. Meng. Validation of cfd simulations of cerebral aneurysms with implication of geometric variations. J. Biomech. Eng. 128(6):844–851, 2006. doi: 10.1115/1.2354209 .
Huberts, W., A. S. Bode, W. Kroon, R. N. Planken, J. H. M. Tordoir, F. N. van de Vosse, and E. M. H. Bosboom. A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Med. Eng. Phys. 34(2):233–248, 2012. doi: 10.1016/j.medengphy.2011.07.015 .
Kaminsky, R., K. Dumont, H. Weber, M. Schroll, and P. Verdonck. PIV validation of blood-heart valve leaflet interaction modelling. Int. J. Artif. Organs 30(7):640–648, 2007.
Kaminsky, R., U. Morbiducci, M. Rossi, L. Scalise, P. Verdonck, and M. Grigioni. Time-resolved piv technique for high temporal resolution measurement of mechanical prosthetic aortic valve fluid dynamics. Int. J. Artif. Organs 30(2):153–162, 2007.
Karniadakis, G. E., and S. Sherwin. Spectral/hp Element Methods for Computational Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford: Oxford University Press, 2005.
Karypis, G., and V. Kumar. METIS, a software package for partitioning unstructured graphs, partitioning meshes, and computing fill-reducing orderings of sparse matrices. Technical Report Version 4.0, University of Minnesota, Department of Computer Science/Army HPC Research Center, 1998.
Kharboutly, Z., V. Deplano, E. Bertrand and C. Legallais. Numerical and experimental study of blood flow through a patient-specific arteriovenous fistula used for hemodialysis. Med. Eng. Phys. 32(2):111–118, 2010. doi: 10.1016/j.medengphy.2009.10.013 .
Khodarahmi, I., M. Shakeri, M. Sharp, and A. A. Amini. Using piv to determine relative pressures in a stenotic phantom under steady flow based on the pressure-poisson equation. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010:2594–2597, 2010. doi: 10.1109/IEMBS.2010.5626676 .
Kirk, B., J. W. Peterson, R. H. Stogner, and G. F. Carey. libmesh: A c++ library for parallel adaptive mesh refinement/coarsening simulations. Eng. Comput. 22:237–254, 2006.
Loth, F., P. Fischer, N. Arslan, C. Bertram, S. Lee, T. Royston, W. Shaalan, and H. Bassiouny. Transitional flow at the venous anastomosis of an arteriovenous graft: potential activation of the erk1/2 mechanotransduction pathway. J. Biomech. Eng. 125(1), 2003. http://ukpmc.ac.uk/abstract/MED/12661196 .
Manning, K. B., V. Kini, A. A. Fontaine, S. Deutsch, and J. M. Tarbell. Regurgitant flow field characteristics of the St. Jude bileaflet mechanical heart valve under physiologic pulsatile flow using particle image velocimetry. Artif. Organs 27(9):840–846, 2003.
Mareels, G., R. Kaminsky, S. Eloot, and P. R. Verdonck. Particle image velocimetry-validated, computational fluid dynamics-based design to reduce shear stress and residence time in central venous hemodialysis catheters. ASAIO J. 53(4):438–446, 2007. doi: 10.1097/MAT.0b013e3180683b7c .
Medvitz, R. B., V. Reddy, S. Deutsch, K. B. Manning, and E. G. Paterson. Validation of a cfd methodology for positive displacement lvad analysis using piv data. J. Biomech. Eng. 131(11):111,009, 2009. doi: 10.1115/1.4000116 .
Morsy, A. H., M. Kulbaski, C. Chen, H. Isiklar, and A. B. Lumsden. Incidence and characteristics of patients with hand ischemia after a hemodialysis access procedure. J. Surg. Res. 74(1):8–10, 1998. doi: 10.1006/jsre.1997.5206 .
Stanislas, K., K. Okamoto, C. Kahler, J. Westerweel, and F. Scarano. Main results of the third international challenge. Exp. Fluids 45:27–71, 2008.