Numerical Analysis of the Cooling System Performance and Effectiveness in Aluminum Low-Pressure Die Casting

International Journal of Metalcasting - Tập 15 - Trang 216-228 - 2020
Hakan Yavuz1,2, Onur Ertugrul1
1Department of Materials Science and Engineering, Izmir Katip Celebi University, Izmir, Turkey
2CMS Light Alloy Wheels Co. R&D Center, Çiğli, Izmir, Turkey

Tóm tắt

This study was carried out to determine the parameters affecting the performance of ring-type air cooling channels used in low-pressure die casting method for aluminum wheel casting. The main purpose of this study is to reveal the working principles of air cooling used in wheel casting. The study was conducted using computational fluid dynamics software. Field verification was performed before different numerical experiments. Then, flow rate was measured with different numerical experiments by changing the number of cooling inlets, number of cooling outlets and cooling pressure of the cooling channel. Experiments with numerical methods were examined statistically. The results showed that the flow rate of the cooling air is affected by the inlet count, the pressure of the cooling channel and the ratio between the inlet and outlet areas. Cooling system would contain air pressure of 6 bar, maximum outlet count of 12 and inlet count of 2 for optimum cooling performance and effectiveness. Ai/Ao ratio was found as 0.5 for maximum mass flow to this cooling system.

Tài liệu tham khảo

J. Duan, C. Reilly, D.M. Maijer, S.L. Cockcroft, A.B. Phillion, IOP Conf. Ser. Mater. Sci. Eng. 84, 012036 (2015). https://doi.org/10.1088/1757-899x/84/1/012036 D. Sui, Z. Cui, R. Wang, S. Hao, Q. Han, Effect of cooling process on porosity in the aluminum alloy automotive wheel during low-pressure die casting. Int. J. Metalcast. 10(1), 32–42 (2015). https://doi.org/10.1007/s40962-015-0008-0 P.I. Manilal, D.P.K. Singh, Z.W. Chen, Computer modeling and experimentation for thermal control of dies in permanent mold casting, in Transactions American Foundrymens Society 111, pp. 125–136 (2003) M. Ayabe, T. Nagaoka, K. Shibata, H. Nozute, H. Koyama, K. Ozaki, T. Yanagisawa, Effect of high thermal conductivity die steel in aluminum casting. Int. J. Metalcast. 2(2), 47–55 (2008). https://doi.org/10.1007/BF03355427 S. Li, D. Apelian, Int. J. Metalcast. 5(1), 23–40 (2011). https://doi.org/10.1007/BF03355505 J.G. Kaufman, E.L. Rooy, Aluminum Alloy Castings Properties: Properties, Processes and Applications, 1st edn. (ASM International, Materials Park, OH, 2004) M. Shabani, A. Mazahery, Arch. Metall. Mater. 56(3), 671–675 (2011). https://doi.org/10.2478/v10172-011-0073-1 L. Zhang, Y. Jiang, Z. Ma, S. Shan, Y. Jia, C. Fan, W. Wang, J. Mater. Process. Techn. 207(1–3), 107–111 (2008). https://doi.org/10.1016/j.jmatprotec.2007.12.059 R. Chen, Y. Shi, Q. Xu, B. Liu, Trans. Nonferrous Metal. Soc. China 24(6), 1645–1652 (2014). https://doi.org/10.1016/S1003-6326(14)63236-2 M. Ayabe, T. Nagaoka, K. Shibata, H. Nozute, H. Koyama, K. Ozaki, T. Yanagisawa, Int. J. Metalcast. 2(2), 47–55 (2008). https://doi.org/10.1007/BF03355427 J.-I. Cho, C.-W. Kim, Int. J. Metalcast. 8(1), 49–55 (2014). https://doi.org/10.1007/BF03355571 W. Kasprzak, M. Sahoo, J. Sokolowski, H. Yamagata, H. Kurita, The effect of the melt temperature and the cooling rate on the microstructure of the Al-20% Si alloy used for monolithic engine blocks. Int. J. Metalcast. 3(3), 55–71 (2009). https://doi.org/10.1007/BF03355453 Y.S. Lerner, Mold life improvement in permanent mold casting, in 5th AFS International Conference on Permanent Mold Casting of Aluminum, pp. 81–94 (American Foundry Society, Des Plaines, IL, 2000) A. Long, D. Thornhill, C. Armstrong, D. Watson, Stress correlation between instrumentation and simulation analysis of the die for high pressure die casting. Int. J. Metalcast. 7(2), 27–41 (2013). https://doi.org/10.1007/BF03355551 Y.S. Lerner, Water or air? Examining permanent mold cooling methods. Mod Cast 92(23), 26 (2002) R.J.H. Lee, Effect of cooling circuit duration on formation of solidification shrinkage in A356 Casting automotive wheels (Scriptie, 2006). Retrieved from https://core.ac.uk/download/pdf/56360952.pdf H. Kawahara, Chapter 29: Heat and Mass Transfer in Jet Type Mold Cooling Pipe, in Developments in Heat Transfer, ed. by M.A. dos Santos Bernardes (InTech, London, 2011), pp. 573–588 P.H. Oosthuizen, W.E. Carscallen, International Compress Fluid Flow (CRC Press, Florida, 2013) K. Marzec, A. Kucaba-Pietal, J. Phys. Conf. Ser. 530, 012038 (2014). https://doi.org/10.1088/1742-6596/530/1/012038 M.L. Hosain, R. Bel Fdhila, A. Daneryd, Appl. Energy 164, 934–943 (2016). https://doi.org/10.1016/j.apenergy.2015.08.038 E. Karapetian, G. Aguilar, S. Kimel, E.J. Lavernia, J.S. Nelson, Phys. Med. Biol. 48(1), 1 (2002). https://doi.org/10.1088/0031-9155/48/1/401 M.T. Meyer, I. Mudawar, C.E. Boyack, C.A. Hale, Int. J. Heat Mass Transf. 49(1–2), 17–29 (2006). https://doi.org/10.1016/j.ijheatmasstransfer.2005.07.039 X. He, J.A. Lustbader, M. Arik, R. Sharma, Int. J. Heat Mass Transf. 80, 825–834 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2014.08.006 Y.A. Cengel, J.M. Cimbala, Fluid Mechanics Fundamentals and Applications (McGraw-Hill Education, New York, 2013) X. Gao, R. Li, Spray impingement cooling: the state of the art. Adv Cool Technol Appl (2019). https://doi.org/10.5772/intechopen.80256 R. Dindorf, Estimating potential energy savings in compressed air systems. Proc. Eng. 39, 204–211 (2012). https://doi.org/10.1016/j.proeng.2012.07.026 R.E. Terrell, Improving compressed air system efficiency—know what you really need. Energy Eng. 96(1), 7–15 (1999). https://doi.org/10.1080/01998595.1999.10530444 F. Mazzelli, A.B. Little, S. Garimella, Y. Bartosiewicz, Int. J. Heat Fluid Flow 56, 305–316 (2015). https://doi.org/10.1016/j.ijheatfluidflow.2015.08.003 A. Hemidi, F. Henry, S. Leclaire, J. Seynhaeve, Y. Bartosiewicz, Appl. Therm. Eng. 29(8–9), 1523–1531 (2009). https://doi.org/10.1016/j.applthermaleng.2008.07.003 G. Besagni, F. Inzoli, Appl. Therm. Eng. 117, 122–144 (2017). https://doi.org/10.1016/j.applthermaleng.2017.02.011 S. Croquer, S. Poncet, Z. Aidoun, Int. J. Refrig. 61, 140–152 (2016). https://doi.org/10.1016/j.ijrefrig.2015.07.030 O. Caggese, G. Gnaegi, G. Hannema, A. Terzis, P. Ott, Int. J. Heat Mass Transf. 65, 873–882 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.043 S. Fechter, A. Terzis, P. Ott, B. Weigand, J. Von Wolfersdorf, M. Cochet, Int. J. Heat Mass Transf. 67, 1208–1219 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.09.003