Numerical Analysis of Microbubble Rising in an Oil–water Liquid Layer under Gravity Based on Three-phase Field Method

Kailiang Zhang1, Yuhan Wei1, Di Yu1, Jiuqing Liu1, Jingliang Lv2
1College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, People’s Republic of China
2School of Traffic and Transportation, Northeast Forestry University, Harbin, People’s Republic of China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ahmed, D., Mao, X., Juluri, B.K., Huang, T.J.: A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid. Nanofluid. 7(5), 727–731 (2009). https://doi.org/10.1007/s10404-009-0444-3

Angulo, A., van der Linde, P., Gardeniers, H., Modestino, M., Fernández Rivas, D.: Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4(3), 555–579 (2020). https://doi.org/10.1016/j.joule.2020.01.005

Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn–hilliard/navier–stokes model for the simulation of three-phase flows. Transp. Porous Media 82(3), 463–483 (2009). https://doi.org/10.1007/s11242-009-9408-z

Bui, T.T., Nguyen, C.D., Shim, N., Han, M.: Total petroleum hydrocarbon removal from oil-sand by injecting charged nanobubbles. Environ. Nanotechnol. Monit. Manag. 17 (2022). https://doi.org/10.1016/j.enmm.2022.100653

Cao, Y., Macián-Juan, R.: Numerical study of the central breakup behaviors of a large bubble rising in quiescent liquid. Chem. Eng. Sci. 225 (2020). https://doi.org/10.1016/j.ces.2020.115804

Chaudhuri, J., Mandal, T.K., Bandyopadhyay, D.: Influence of the pre-impact shape of an oil droplet on the post-impact flow dynamics at air-water interface. Soft Matter 18(21), 4102–4117 (2022a). https://doi.org/10.1039/d2sm00219a

Chaudhuri, J., Mandal, T.K., Bandyopadhyay, D.: Single and double toroid formation during oil droplet impact on an air–water interface at low Reynolds number. Phys. Fluids 34(1) (2022b). https://doi.org/10.1063/5.0077745

Chen, Y.-L., Jiang, H.-R.: Electrorotation of a metallic coated Janus particle under AC electric fields. Appl. Phys. Lett. 109(19), 191605 (2016). https://doi.org/10.1063/1.4967740

Cheng, Y., Yang, J., Li, Z., Zhu, D., Cai, X., Hu, X., et al.: Microbubble-assisted optofluidic control using a photothermal waveguide. Appl. Phys. Lett. 111(15), 151903 (2017). https://doi.org/10.1063/1.4995490

Gao, Y., Wu, M., Lin, Y., Xu, J.: Trapping and control of bubbles in various microfluidic applications. Lab. Chip. 20(24), 4512–4527 (2020). https://doi.org/10.1039/d0lc00906g

Gong, Z., Cai, J., Tan, B., Li, X., Lu, Q., Liu, Y.: PIV investigation of the influence of wall wettability and distance on dynamic behavior of a rising bubble. Prog. Nucl. Energy 148 (2022). https://doi.org/10.1016/j.pnucene.2022.104198

Gumulya, M., Joshi, J.B., Utikar, R.P., Evans, G.M., Pareek, V.: Characteristics of energy production and dissipation around a bubble rising in water. Chem. Eng. Sci. 193, 38–52 (2019). https://doi.org/10.1016/j.ces.2018.08.059

Guo, K., Li, H., Feng, Y., Zhao, J., Wang, T.: Numerical investigation on single bubble and multiple bubbles growth and heat transfer during flow boiling in a microchannel using the VOSET method. Microgravity Sci. Technol. 31(4), 381–393 (2019). https://doi.org/10.1007/s12217-019-9697-y

Hoque, M.M., Moreno-Atanasio, R., Doroodchi, E., Joshi, J. B., Evans, G.M., Mitra, S.: Dynamics of a single bubble rising in a quiescent medium. Exp. Therm. Fluid Sci. 132 (2022). https://doi.org/10.1016/j.expthermflusci.2021.110546

Hua, J., Lou, J.: Numerical simulation of bubble rising in viscous liquid. J. Comput. Phys. 222(2), 769–795 (2007). https://doi.org/10.1016/j.jcp.2006.08.008

Li, S., Ji, J., Liu, Z.: The shape and drag coefficient for a single bubble rising in stagnant shear-thinning viscoelastic liquids. Exp. Therm. Fluid Sci. 133 (2022). https://doi.org/10.1016/j.expthermflusci.2022.110597.

Liu, S., Wei, M., Liu, R., Kuang, S., Shi, C., Ma, C.: Lab in a Pasteur pipette: low-cost, rapid and visual detection of Bacillus cereu using denaturation bubble-mediated strand exchange amplification. Anal. Chim. Acta. 1080, 162–169 (2019). https://doi.org/10.1016/j.aca.2019.07.011

Luo, Y., Su, Y., Lin, Y., He, L., Wu, L., Hou, X., et al.: MnFe2O4 micromotors enhanced field digestion and solid phase extraction for on-site determination of arsenic in rice and water. Anal. Chim. Acta. 1156, 338354 (2021). https://doi.org/10.1016/j.aca.2021.338354

Mustafa, A., Eser, A., Aksu, A.C., Kiraz, A., Tanyeri, M., Erten, A., et al.: A micropillar-based microfluidic viscometer for Newtonian and non-Newtonian fluids. Anal. Chim. Acta. 1135, 107–115 (2020). https://doi.org/10.1016/j.aca.2020.07.039

Ngo, L.C., Choi, H.G.: Evaluation of pressure and viscous drags of a rising bubble at small Reynolds numbers. J. Mech. Sci. Technol. 36(3), 1303–1313 (2022). https://doi.org/10.1007/s12206-022-0220-9

Ohta, M., Furukawa, T., Yoshida, Y., Sussman, M.: A three-dimensional numerical study on the dynamics and deformation of a bubble rising in a hybrid Carreau and FENE-CR modeled polymeric liquid. J. Nonnewton. Fluid Mech. 265, 66–78 (2019). https://doi.org/10.1016/j.jnnfm.2018.12.012

Poventud-Estrada, C.M., Acevedo, R., Morales, C., Betancourt, L., Diaz, D.C., Rodriguez, M.A., et al.: Microgravity effects on chronoamperometric ammonia oxidation reaction at platinum nanoparticles on modified mesoporous carbon supports. Microgravity Sci. Technol. 29(5), 381–389 (2017). https://doi.org/10.1007/s12217-017-9558-5

Rayaprolu, A., Srivastava, S.K., Anand, K., Bhati, L., Asthana, A., Rao, C.M.: Fabrication of cost-effective and efficient paper-based device for viscosity measurement. Anal. Chim. Acta. 1044, 86–92 (2018). https://doi.org/10.1016/j.aca.2018.05.036

Romero-Calvo, Á., Herrada, M.A., Cano-Gómez, G., Schaub, H.: Fully coupled interface-tracking model for axisymmetric ferrohydrodynamic flows. Appl. Math. Model. 111, 836–861 (2022). https://doi.org/10.1016/j.apm.2022.06.046

Shu, S., Vidal, D., Bertrand, F., Chaouki, J.: Multiscale multiphase phenomena in bubble column reactors: A review. Renew. Energy 141, 613–631 (2019). https://doi.org/10.1016/j.renene.2019.04.020

Sontti, S.G., Atta, A.: CFD analysis of microfluidic droplet formation in non–Newtonian liquid. Chem. Eng. J. 330, 245–261 (2017). https://doi.org/10.1016/j.cej.2017.07.097

Sun, J., Zhang, L., Liu, X., Fan, Y., Feng, Y., Zhang, F., et al.: Coupling model of motion and mass transfer in multicomponent desorption of fine bubbles. Chem. Eng. J. 436 (2022). https://doi.org/10.1016/j.cej.2022.134999.

Terasaka, K., Shibata, H.: Oxygen transfer in viscous non-Newtonian liquids having yield stress in bubble columns. Chem. Eng. Sci. 58(23–24), 5331–5337 (2003). https://doi.org/10.1016/j.ces.2003.09.011

Tripathi, M.K., Sahu, K.C., Govindarajan, R.: Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6, 6268 (2015). https://doi.org/10.1038/ncomms7268

Wang, K., Qin, K., Wang, T., Luo, G.: Ultra-thin liquid film extraction based on a gas–liquid–liquid double emulsion in a microchannel device. RSC Adv. 5(9), 6470–6474 (2015). https://doi.org/10.1039/c4ra14489a

Wang, S., Huang, X., Yang, C.: Microfluidic bubble generation by acoustic field for mixing enhancement. J. Heat Transf. 134(5), 051014 (2012). https://doi.org/10.1115/1.4005705

Xie, Y., Zhao, C.: An optothermally generated surface bubble and its applications. Nanoscale 9(20), 6622–6631 (2017). https://doi.org/10.1039/c7nr01360d

Xu, J.H., Chen, R., Wang, Y.D., Luo, G.S.: Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device. Lab. Chip. 12(11), 2029–2036 (2012). https://doi.org/10.1039/c2lc21193a

Yang, L., Wang, K., Mak, S., Li, Y., Luo, G.: A novel microfluidic technology for the preparation of gas-in-oil-in-water emulsions. Lab. Chip. 13(17), 3355–3359 (2013). https://doi.org/10.1039/c3lc50652e

Zhang, A., Sun, P., Ming, F.: An SPH modeling of bubble rising and coalescing in three dimensions. Comput. Methods Appl. Mech. Eng. 294, 189–209 (2015). https://doi.org/10.1016/j.cma.2015.05.014

Zhang, K., Ren, Y., Jiang, T., Jiang, H.: Flexible fabrication of lipophilic-hydrophilic micromotors by off-chip photopolymerization of three-phase immiscible flow induced janus droplet templates. Anal. Chim. Acta. 1182, 338955 (2021a). https://doi.org/10.1016/j.aca.2021.338955

Zhang, K., Xing, F., Liu, J., Xie, Z.: Flexible on-chip droplet generation, switching and splitting via controllable hydrodynamics. Anal. Chim. Acta. 1229, 340363 (2022). https://doi.org/10.1016/j.aca.2022.340363

Zhang, L., Yang, C., Mao, Z.-S.: Numerical simulation of a bubble rising in shear-thinning fluids. J. Nonnewton. Fluid Mech. 165(11–12), 555–567 (2010). https://doi.org/10.1016/j.jnnfm.2010.02.012

Zhang, Y., Chen, X., Han, W.: Generation of Droplets in Double T-Shaped Microchannels with Necked Structures. Chem. Eng. Technol. 44(7), 1241–1250 (2021b). https://doi.org/10.1002/ceat.202000428