Numerical Analysis of Microbubble Rising in an Oil–water Liquid Layer under Gravity Based on Three-phase Field Method
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ahmed, D., Mao, X., Juluri, B.K., Huang, T.J.: A fast microfluidic mixer based on acoustically driven sidewall-trapped microbubbles. Microfluid. Nanofluid. 7(5), 727–731 (2009). https://doi.org/10.1007/s10404-009-0444-3
Angulo, A., van der Linde, P., Gardeniers, H., Modestino, M., Fernández Rivas, D.: Influence of bubbles on the energy conversion efficiency of electrochemical reactors. Joule 4(3), 555–579 (2020). https://doi.org/10.1016/j.joule.2020.01.005
Boyer, F., Lapuerta, C., Minjeaud, S., Piar, B., Quintard, M.: Cahn–hilliard/navier–stokes model for the simulation of three-phase flows. Transp. Porous Media 82(3), 463–483 (2009). https://doi.org/10.1007/s11242-009-9408-z
Bui, T.T., Nguyen, C.D., Shim, N., Han, M.: Total petroleum hydrocarbon removal from oil-sand by injecting charged nanobubbles. Environ. Nanotechnol. Monit. Manag. 17 (2022). https://doi.org/10.1016/j.enmm.2022.100653
Cao, Y., Macián-Juan, R.: Numerical study of the central breakup behaviors of a large bubble rising in quiescent liquid. Chem. Eng. Sci. 225 (2020). https://doi.org/10.1016/j.ces.2020.115804
Chaudhuri, J., Mandal, T.K., Bandyopadhyay, D.: Influence of the pre-impact shape of an oil droplet on the post-impact flow dynamics at air-water interface. Soft Matter 18(21), 4102–4117 (2022a). https://doi.org/10.1039/d2sm00219a
Chaudhuri, J., Mandal, T.K., Bandyopadhyay, D.: Single and double toroid formation during oil droplet impact on an air–water interface at low Reynolds number. Phys. Fluids 34(1) (2022b). https://doi.org/10.1063/5.0077745
Chen, Y.-L., Jiang, H.-R.: Electrorotation of a metallic coated Janus particle under AC electric fields. Appl. Phys. Lett. 109(19), 191605 (2016). https://doi.org/10.1063/1.4967740
Cheng, Y., Yang, J., Li, Z., Zhu, D., Cai, X., Hu, X., et al.: Microbubble-assisted optofluidic control using a photothermal waveguide. Appl. Phys. Lett. 111(15), 151903 (2017). https://doi.org/10.1063/1.4995490
Gao, Y., Wu, M., Lin, Y., Xu, J.: Trapping and control of bubbles in various microfluidic applications. Lab. Chip. 20(24), 4512–4527 (2020). https://doi.org/10.1039/d0lc00906g
Gong, Z., Cai, J., Tan, B., Li, X., Lu, Q., Liu, Y.: PIV investigation of the influence of wall wettability and distance on dynamic behavior of a rising bubble. Prog. Nucl. Energy 148 (2022). https://doi.org/10.1016/j.pnucene.2022.104198
Gumulya, M., Joshi, J.B., Utikar, R.P., Evans, G.M., Pareek, V.: Characteristics of energy production and dissipation around a bubble rising in water. Chem. Eng. Sci. 193, 38–52 (2019). https://doi.org/10.1016/j.ces.2018.08.059
Guo, K., Li, H., Feng, Y., Zhao, J., Wang, T.: Numerical investigation on single bubble and multiple bubbles growth and heat transfer during flow boiling in a microchannel using the VOSET method. Microgravity Sci. Technol. 31(4), 381–393 (2019). https://doi.org/10.1007/s12217-019-9697-y
Hoque, M.M., Moreno-Atanasio, R., Doroodchi, E., Joshi, J. B., Evans, G.M., Mitra, S.: Dynamics of a single bubble rising in a quiescent medium. Exp. Therm. Fluid Sci. 132 (2022). https://doi.org/10.1016/j.expthermflusci.2021.110546
Hua, J., Lou, J.: Numerical simulation of bubble rising in viscous liquid. J. Comput. Phys. 222(2), 769–795 (2007). https://doi.org/10.1016/j.jcp.2006.08.008
Li, S., Ji, J., Liu, Z.: The shape and drag coefficient for a single bubble rising in stagnant shear-thinning viscoelastic liquids. Exp. Therm. Fluid Sci. 133 (2022). https://doi.org/10.1016/j.expthermflusci.2022.110597.
Liu, S., Wei, M., Liu, R., Kuang, S., Shi, C., Ma, C.: Lab in a Pasteur pipette: low-cost, rapid and visual detection of Bacillus cereu using denaturation bubble-mediated strand exchange amplification. Anal. Chim. Acta. 1080, 162–169 (2019). https://doi.org/10.1016/j.aca.2019.07.011
Luo, Y., Su, Y., Lin, Y., He, L., Wu, L., Hou, X., et al.: MnFe2O4 micromotors enhanced field digestion and solid phase extraction for on-site determination of arsenic in rice and water. Anal. Chim. Acta. 1156, 338354 (2021). https://doi.org/10.1016/j.aca.2021.338354
Mustafa, A., Eser, A., Aksu, A.C., Kiraz, A., Tanyeri, M., Erten, A., et al.: A micropillar-based microfluidic viscometer for Newtonian and non-Newtonian fluids. Anal. Chim. Acta. 1135, 107–115 (2020). https://doi.org/10.1016/j.aca.2020.07.039
Ngo, L.C., Choi, H.G.: Evaluation of pressure and viscous drags of a rising bubble at small Reynolds numbers. J. Mech. Sci. Technol. 36(3), 1303–1313 (2022). https://doi.org/10.1007/s12206-022-0220-9
Ohta, M., Furukawa, T., Yoshida, Y., Sussman, M.: A three-dimensional numerical study on the dynamics and deformation of a bubble rising in a hybrid Carreau and FENE-CR modeled polymeric liquid. J. Nonnewton. Fluid Mech. 265, 66–78 (2019). https://doi.org/10.1016/j.jnnfm.2018.12.012
Poventud-Estrada, C.M., Acevedo, R., Morales, C., Betancourt, L., Diaz, D.C., Rodriguez, M.A., et al.: Microgravity effects on chronoamperometric ammonia oxidation reaction at platinum nanoparticles on modified mesoporous carbon supports. Microgravity Sci. Technol. 29(5), 381–389 (2017). https://doi.org/10.1007/s12217-017-9558-5
Rayaprolu, A., Srivastava, S.K., Anand, K., Bhati, L., Asthana, A., Rao, C.M.: Fabrication of cost-effective and efficient paper-based device for viscosity measurement. Anal. Chim. Acta. 1044, 86–92 (2018). https://doi.org/10.1016/j.aca.2018.05.036
Romero-Calvo, Á., Herrada, M.A., Cano-Gómez, G., Schaub, H.: Fully coupled interface-tracking model for axisymmetric ferrohydrodynamic flows. Appl. Math. Model. 111, 836–861 (2022). https://doi.org/10.1016/j.apm.2022.06.046
Shu, S., Vidal, D., Bertrand, F., Chaouki, J.: Multiscale multiphase phenomena in bubble column reactors: A review. Renew. Energy 141, 613–631 (2019). https://doi.org/10.1016/j.renene.2019.04.020
Sontti, S.G., Atta, A.: CFD analysis of microfluidic droplet formation in non–Newtonian liquid. Chem. Eng. J. 330, 245–261 (2017). https://doi.org/10.1016/j.cej.2017.07.097
Sun, J., Zhang, L., Liu, X., Fan, Y., Feng, Y., Zhang, F., et al.: Coupling model of motion and mass transfer in multicomponent desorption of fine bubbles. Chem. Eng. J. 436 (2022). https://doi.org/10.1016/j.cej.2022.134999.
Terasaka, K., Shibata, H.: Oxygen transfer in viscous non-Newtonian liquids having yield stress in bubble columns. Chem. Eng. Sci. 58(23–24), 5331–5337 (2003). https://doi.org/10.1016/j.ces.2003.09.011
Tripathi, M.K., Sahu, K.C., Govindarajan, R.: Dynamics of an initially spherical bubble rising in quiescent liquid. Nat. Commun. 6, 6268 (2015). https://doi.org/10.1038/ncomms7268
Wang, K., Qin, K., Wang, T., Luo, G.: Ultra-thin liquid film extraction based on a gas–liquid–liquid double emulsion in a microchannel device. RSC Adv. 5(9), 6470–6474 (2015). https://doi.org/10.1039/c4ra14489a
Wang, S., Huang, X., Yang, C.: Microfluidic bubble generation by acoustic field for mixing enhancement. J. Heat Transf. 134(5), 051014 (2012). https://doi.org/10.1115/1.4005705
Xie, Y., Zhao, C.: An optothermally generated surface bubble and its applications. Nanoscale 9(20), 6622–6631 (2017). https://doi.org/10.1039/c7nr01360d
Xu, J.H., Chen, R., Wang, Y.D., Luo, G.S.: Controllable gas/liquid/liquid double emulsions in a dual-coaxial microfluidic device. Lab. Chip. 12(11), 2029–2036 (2012). https://doi.org/10.1039/c2lc21193a
Yang, L., Wang, K., Mak, S., Li, Y., Luo, G.: A novel microfluidic technology for the preparation of gas-in-oil-in-water emulsions. Lab. Chip. 13(17), 3355–3359 (2013). https://doi.org/10.1039/c3lc50652e
Zhang, A., Sun, P., Ming, F.: An SPH modeling of bubble rising and coalescing in three dimensions. Comput. Methods Appl. Mech. Eng. 294, 189–209 (2015). https://doi.org/10.1016/j.cma.2015.05.014
Zhang, K., Ren, Y., Jiang, T., Jiang, H.: Flexible fabrication of lipophilic-hydrophilic micromotors by off-chip photopolymerization of three-phase immiscible flow induced janus droplet templates. Anal. Chim. Acta. 1182, 338955 (2021a). https://doi.org/10.1016/j.aca.2021.338955
Zhang, K., Xing, F., Liu, J., Xie, Z.: Flexible on-chip droplet generation, switching and splitting via controllable hydrodynamics. Anal. Chim. Acta. 1229, 340363 (2022). https://doi.org/10.1016/j.aca.2022.340363
Zhang, L., Yang, C., Mao, Z.-S.: Numerical simulation of a bubble rising in shear-thinning fluids. J. Nonnewton. Fluid Mech. 165(11–12), 555–567 (2010). https://doi.org/10.1016/j.jnnfm.2010.02.012