Number of holes in unavoidable sets of partial words I

Journal of Discrete Algorithms - Tập 14 - Trang 55-64 - 2012
F. Blanchet-Sadri1, Bob Chen2, Aleksandar Chakarov3
1Department of Computer Science, University of North Carolina, P.O. Box 26170, Greensboro, NC 27402-6170, USA
2Department of Mathematics, University of California, San Diego, 9500 Gilman Drive, Dept 0112, LaJolla, CA 92093-0112, USA
3Department of Computer Science, University of Colorado at Boulder, 430 UCB, Boulder, CO 80309-0430, USA

Tài liệu tham khảo

Blanchet-Sadri, 2008 Blanchet-Sadri, 2009, Unavoidable sets of partial words, Theory of Computing Systems, 45, 381, 10.1007/s00224-008-9106-1 Blanchet-Sadri, 2010, Classifying all avoidable sets of partial words of size two, 10.1142/9781848165458_0002 Blanchet-Sadri, 2011, Minimum number of holes in unavoidable sets of partial words of size three, vol. 6460, 43 Champarnaud, 2004, Unavoidable sets of constant length, International Journal of Algebra and Computation, 14, 241, 10.1142/S0218196704001700 Choffrut, 1984, On extendibility of unavoidable sets, Discrete Applied Mathematics, 9, 125, 10.1016/0166-218X(84)90014-3 Crochemore, 1983, An optimal test on finite unavoidable sets of words, Information Processing Letters, 16, 179, 10.1016/0020-0190(83)90119-9 Ehrenfeucht, 1983, On regularity of context-free languages, Theoretical Computer Science, 27, 311, 10.1016/0304-3975(82)90124-4 Evdokimov, 2004, Crucial words and the complexity of some extremal problems for sets of prohibited words, Journal of Combinatorial Theory, Series A, 105, 273, 10.1016/j.jcta.2003.12.003 Higgins, 2006, Unavoidable sets, Theoretical Computer Science, 359, 231, 10.1016/j.tcs.2006.03.024 Mykkeltveit, 1972, A proof of Golombʼs conjecture for the de Bruijn graph, Journal of Combinatorial Theory, Series B, 13, 40, 10.1016/0095-8956(72)90006-8 Rosaz, 1995, Unavoidable languages, cuts and innocent sets of words, RAIRO – Theoretical Informatics and Applications, 29, 339, 10.1051/ita/1995290503391 Rosaz, 1998, Inventories of unavoidable languages and the word-extension conjecture, Theoretical Computer Science, 201, 151, 10.1016/S0304-3975(97)00031-5 Saker, 2002, Unavoidable sets of words of uniform length, Information and Computation, 173, 222, 10.1006/inco.2001.3123