Nucleophilic properties of purine bases: inherent reactivity versus reaction conditions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Enoch SJ, Cronin MTD (2010) A review of the electrophilic reaction chemistry involved in covalent DNA binding. Crit Rev Toxicol 40:728–748. doi: 10.3109/10408444.2010.494175
Stone MP, Huang H, Brown KL, Shanmugam G (2011) Chemistry and structural biology of DNA damage and biological consequences. Chem Biodivers 8:1571–1615. doi: 10.1002/cbdv.201100033
Xue W, Siner A, Rance M et al (2002) A metabolic activation mechanism of 7H-dibenzo[c, g]carbazole via o-quinone. Part 2: covalent adducts of 7H-dibenzo[c, g]carbazole-3,4-dione with nucleic acid bases and nucleosides. Chem Res Toxicol 15:915–921
Eder E, Hoffman C, Bastian H et al (1990) Molecular mechanisms of DNA damage initiated by alpha, beta-unsaturated carbonyl compounds as criteria for genotoxicity and mutagenicity. Environ Health Perspect 88:99–106
Bolton JL, Pisha E, Zhang F, Qiu S (1998) Role of quinoids in estrogen carcinogenesis. Chem Res Toxicol 11:1113–1127. doi: 10.1021/tx9801007
Bolton JL, Thatcher GRJ (2008) Potential mechanisms of estrogen quinone carcinogenesis. Chem Res Toxicol 21:1113–1127. doi: 10.1021/tx700191p
Wang H, Kozekov ID, Harris TM, Rizzo CJ (2003) Site-specific synthesis and reactivity of oligonucleotides containing stereochemically defined 1, N2-deoxyguanosine adducts of the lipid peroxidation product trans-4-hydroxynonenal. J Am Chem Soc 125:5687–5700. doi: 10.1021/ja0288800
Stone MP, Cho Y, Huang HAI et al (2008) Interstrand DNA cross-links induced by a, b-unsaturated aldehydes derived from lipid peroxidation and environmental sources. Acc Chem Res 41:793–804
Woo J, Snorri TS, Hopkins PB (1993) DNA interstrand cross-linking reactions of pyrrole-derived, bifunctional electrophiles: evidence for a common target site in DNA. J Am Chem Soc 115:3407–3415
Boysen G, Pachkowski BF, Nakamura J, Swenberg JA (2009) The formation and biological significance of N7-guanine adducts. Mutat Res 678:76–94. doi: 10.1016/j.mrgentox.2009.05.006
Berson JA (2006) Kinetics, thermodynamics, and the problem of selectivity: the maturation of an idea. Angew Chem Int Ed 45:4724–4729. doi: 10.1002/anie.200600229
Pearson RG, Songstad J (1966) Application of the principle of hard and soft acids and bases to organic chemistry. J Am Chem Soc 89:1827–1836
Kornblum N, Smiley RA, Blackwood RK, Iffland DC (1955) The mechanism of the reaction of silver nitrite with alkyl halides. The contrasting reactions of silver and alkali metal salts with alkyl halides. The alkylation of ambident anions. J Am Chem Soc 77:6269–6280
Klopman G (1968) Chemical reactivity and the concept of charge-and-frontier controlled reactions. J Am Chem Soc 90:223–234
Royer RE, Lyle TA, Moy GG et al (1979) Reactivity-selectivity properties of reactions of carcinogenic electrophiles with biomolecules. Kinetics and product of the reaction of benzo[a]-6-methyl cation with nucleosides and deoxynucleosides. J Org Chem 44:3202–3207
Moschel RC, Hudgins WR, Dipple A (1979) Selectivity in nucleoside alkylation and aralkylation in relation to chemical carcinogenesis. J Org Chem 44:3324–3328. doi: 10.1021/jo01333a010
Wang H, Meng F (2010) Theoretical study of proton-catalyzed hydrolytic deamination mechanism of adenine. Theor Chem Acc 127:561–571. doi: 10.1007/s00214-010-0747-1
Freccero M, Gandolfi R, Sarzi-Amadè M (2003) Selectivity of purine alkylation by a quinone methide. Kinetic or thermodynamic control? J Org Chem 68:6411–6423. doi: 10.1021/jo0346252
Holy A, Gunter J, Dvorakova H et al (1999) Structure-antiviral activity relationship in the series of pyrimidine and purine N-[2-(2-(phosphonomethoxy)ethyl] nucleoside analogues. 1. Derivatives substituted at the carbon atoms of the base. J Med Chem 42:2064–2086
Veldhuyzen WF, Lam YF, Rokita SE (2001) 2′-Deoxyguanosine reacts with a model quinone methide at multiple sites. Chem Res Toxicol 14:1345–1351
Weinert EE, Frankenfield KN, Rokita SE (2005) Time-dependent evolution of adducts formed between deoxynucleosides and a model quinone methide. Chem Res Toxicol 18:1364–1370. doi: 10.1021/tx0501583
Pawłowicz AJ, Munter T, Zhao Y, Kronberg L (2006) Formation of acrolein adducts with 2′-deoxyadenosine in calf thymus DNA. Chem Res Toxicol 19:571–576. doi: 10.1021/tx0503496
Breugst M, Corral Bautista F, Mayr H (2012) Nucleophilic reactivities of the anions of nucleobases and their subunits. Chem A Eur J 18:127–137. doi: 10.1002/chem.201102411
Lee HM, Chae Y-H, Kwon C, Kim SK (2007) Conformations of adducts formed between the genotoxic benzo[a]pyrene-7,8-dione and nucleosides studied by density functional theory. Biophys Chem 125:151–158. doi: 10.1016/j.bpc.2006.07.015
Ford GP, Scribner JD (1990) Prediction of nucleoside-carcinogen reactivity. Alkylation of adenine, cytosine, guanine, and thymine and their deoxynucleosides by alkanediazonium ions. Chem Res Toxicol 3:219–230
Parr RG, Yang W (1989) Density functional theory of atoms and molecules. Oxford University Press, Oxford
Bren U, Guengerich FP, Mavri J (2007) Guanine alkylation by the potent carcinogen aflatoxin B1: quantum chemical calculations. Chem Res Toxicol 20:1134–1140. doi: 10.1021/tx700073d
Bren U, Zupan M, Guengerich FP, Mavri J (2006) Chemical reactivity as a tool to study carcinogenicity: reaction between chloroethylene oxide and guanine. J Org Chem 71:4078–4084. doi: 10.1021/jo060098l
Jang YH, Goddard WA III, Noyes KT et al (2003) pK a values of guanine in water : density functional theory calculations combined with Poisson-Boltzmann continuum-solvation model. J Phys Chem B 107:344–357
Shukla PK, Ganapathy V, Mishra PC (2011) A quantum theoretical study of reactions of methyldiazonium ion with DNA base pairs. Chem Phys 388:31–37. doi: 10.1016/j.chemphys.2011.07.014
Xing D, Sun L, Cukier RI, Bu Y (2007) Theoretical prediction of the p53 gene mutagenic mechanism induced by trans-4-hydroxy-2-nonenal. J Phys Chem B 111:5362–5371
Geerlings P, De Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1873. doi: 10.1021/cr990029p
Yang W, Parr RG (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci U S A 82:6723–6726
Parr RG, Szentpaly L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924. doi: 10.1021/ja983494x
Chattaraj PK, Sarkar U, Roy DR (2006) Electrophilicity index. Chem Rev 106:2065–2091. doi: 10.1021/cr040109f
Jaramillo P, Pérez P, Contreras R et al (2006) Definition of a nucleophilicity scale. J Phys Chem A 110:8181–8187. doi: 10.1021/jp057351q
Anderson JSM, Melin J, Ayers PW (2007) Conceptual density-functional theory for general chemical reactions, including those that are neither charge- nor orbital-controlled. 2. Application to molecules where frontier molecular orbital theory fails. J Chem Theory Comput 3:375–389
LoPachin RM, Gavin T, Decaprio A, Barber DS (2012) Application of the hard and soft, acids and bases (HSAB) theory to toxicant–target interactions. Chem Res Toxicol 25:239–251. doi: 10.1021/tx2003257
Nalewajski RF, Korchowiec J (1998) Charge sensitivity approach to electronic structure and chemical reactivity. World Scientific Publishing, Singapore
Stachowicz A, Styrcz A, Korchowiec J (2011) Charge sensitivity analysis in force-field-atom resolution. J Mol Model 17:2217–2226. doi: 10.1007/s00894-011-1006-7
Stachowicz A, Korchowiec J (2012) Generalized charge sensitivity analysis. J Struct Chem 23:1449–1458
Donnelly RA, Parr RG (1978) Elementary properties of an energy functional of the first-order reduced density matrix. J Chem Phys 69:4431. doi: 10.1063/1.436433
Parr RG, Pearson RG (1983) Absolute hardness: companion parameter to absolute electronegativity. J Am Chem Soc 105:7512–7516. doi: 10.1021/ja00364a005
Berkowitz M, Parr RG (1988) Molecular hardness and softness, local hardness and softness, hardness and softness kernels, and relations among these quantities. J Chem Phys 88:2554. doi: 10.1063/1.454034
Parr RG, Yang W (1984) Density functional approach to the frontier-electron theory of chemical reactivity. J Am Chem Soc 106:4049–4050
Politzer P, Weinstein H (1979) Some relations between electronic distribution and electronegativity. J Chem Phys 71:4218. doi: 10.1063/1.438228
Sanderson RT (1951) An interpretation of bond lengths and a classification of bonds. Science 114:670–672. doi: 10.2307/1678148
Sanderson RT (1976) Chemical bonds and bond energy. Academic Press, New York
Ghanty TK, Ghosh SK (1993) Correlation between hardness, polarizability, and size of atoms, molecules, and clusters. J Chem Phys 97:4951–4953
Ayers PW (2007) The physical basis of the hard/soft acid/base principle. Faraday Discuss 135:161. doi: 10.1039/b606877d
Ayers PW (2005) An elementary derivation of the hard/soft-acid/base principle. J Chem Phys 122:141102. doi: 10.1063/1.1897374
Ayers PW, Parr RG, Pearson RG (2006) Elucidating the hard/soft acid/base principle: a perspective based on half-reactions. J Chem Phys 124:194107. doi: 10.1063/1.2196882
Sablon N, De Proft F, Geerlings P (2010) The linear response kernel of conceptual DFT as a measure of electron delocalisation. Chem Phys Lett 498:192–197. doi: 10.1016/j.cplett.2010.08.031
Sablon N, De Proft F, Solà M, Geerlings P (2012) The linear response kernel of conceptual DFT as a measure of aromaticity. Phys Chem Chem Phys 14:3960–3967. doi: 10.1039/c2cp23372j
Fias S, Boisdenghien Z, Stuyver T et al (2013) Analysis of aromaticity in planar metal systems using the linear response kernel. J Phys Chem A 117:3556–3560. doi: 10.1021/jp401760j
Fias S, Geerlings P, Ayers P, De Proft F (2013) Σ, Π aromaticity and anti-aromaticity as retrieved by the linear response kernel. Phys Chem Chem Phys 15:2882–2889. doi: 10.1039/c2cp43612d
Stachowicz A, Korchowiec J (2013) Bond detectors for molecular dynamics simulations, part I: hydrogen bonds. J Comput Chem 34:2261–2269. doi: 10.1002/jcc.23385
Li Y, Evans JNS (1995) The Fukui function: a key concept linking frontier molecular orbital theory and the hard-soft-acid-base principle. J Am Chem Soc 117:7756–7759. doi: 10.1021/ja00134a021
Berkowitz M, Ghosh SK, Parr RG (1985) On the concept of local hardness in chemistry. J Am Chem Soc 107:6811–6814. doi: 10.1021/ja00310a011
Cossi M, Scalmani G, Rega N, Barone V (2002) New developments in the polarizable continuum model for quantum mechanical and classical calculations on molecules in solution. J Chem Phys 117:43. doi: 10.1063/1.1480445
Cossi M, Rega N, Scalmani G, Barone V (2001) Polarizable dielectric model of solvation with inclusion of charge penetration effects. J Chem Phys 114:5691. doi: 10.1063/1.1354187
Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision D.01. Gaussian Inc., Wallingford CT
Stachowicz A, Rogalski M, Korchowiec J (2013) Charge sensitivity approach to mutual polarization of reactants: molecular mechanics perspective. J Mol Model. doi: 10.1007/s00894-013-1757-4
Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. I. J Chem Phys 23:1833–1840
Mulliken RS (1955) Electronic population on LCAO–MO molecular wave functions. II. Overlap populations, bond orders, abd covalent bond energies. J Chem Phys 23:1841–1846
Mulliken RS (1955) Electronic population analysis on LCAO–MO molecular wave functions. III. Effects of hybridization on overlap and gross AO populations. J Chem Phys 23:2338–2342
Reed AE, Weinstock RB, Weinhold F (1985) Natural population analysis. J Chem Phys 83:735. doi: 10.1063/1.449486
Bader RFW (1990) Atoms-in-molecules. Oxford University Press, Oxford
Hirshfeld FL (1977) Bonded-atom fragments for describing molecular charge densities. Theor Chim Acta 44:129–138. doi: 10.1007/BF00549096
Chirlian LE, Francl MM (1987) Atomic charges derived from electrostatic potentials: a detailed study. J Comput Chem 8:894–905. doi: 10.1002/jcc.540080616
Breneman CM, Wiberg KB (1990) Determining atom-centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis. J Comput Chem 11:361–373. doi: 10.1002/jcc.540110311
Bickelhaupt FM, van Eikema Hommes NJR, Guerra FC, Baerends EJ (1996) The carbon–lithium electron pair bond in (CH3Li)n (n = 1, 2, 4). Org Lett 15:2923–2931
Bundari S (1996) The Merck Index, 12th edn. Merck and Co., Inc., Whitehouse Station
Chargaff E, Davidson JN (1955) The nucleic acids. Chemistry and biology. Academic Press Inc., New York
Haynes WM (2012) CRC handbook of chemistry and physics, 93rd edn. CRC Press, Taylor & Francis Group, Boca Raton
Dawson RMC, Elliott DC, Elliott WH, Jones KM (1986) Data for biochemical research, 3rd edn. Oxford University Press, Oxford
Fasman GD (1975) CRC handbook of biochemistry and molecular biology. nucleic acids, 3rd edn. CRC Press, Taylor & Francis Group, Cleaveland
Jordan DO (1960) The chemistry of nucleic acids. Butterworth and Co., Washington
Ts’o POP (1974) Basic principles in nucleic acid chemistry. Academic Press, New York
Taddei M, Ciapetti P (1998) A simple preparation of N-vinyl derivatives of DNA nucleobases. Tetrahedron 54:11305
Browne DT, Eisinger J, Leonard NJ (1968) Synthetic spectroscopic models related to coenzymes and base pairs. II. Evidence for intramolecular base–base interactions in dinucleotide analog. J Am Chem Soc 90:7302–7323
Reiner B, Zamenhof S (1957) Studies on the chemically reactive groups of deoxyribonucleic acids. J Biol Chem 228:475–486
Kinkar Roy R, Hirao K, Pal S (2000) On non-negativity of Fukui function indices. II. J Chem Phys 113:1372. doi: 10.1063/1.481927
Mayr H, Breugst M, Ofial AR (2011) Farewell to the HSAB treatment of ambident reactivity. Angew Chem Int Ed Engl 50:6470–6505. doi: 10.1002/anie.201007100
Anderson DR, Keute JS, Koch TH, Moseley RH (1977) Di-tert-butyl nitroxide quenching of the photoaddition of olefins to the carbon–nitrogen double bond of 3-ethoxyisoindolenone. J Am Chem Soc 99:6332–6340
Tao X, Li Y-Q, Xu H-H et al (2009) Synthesis and characterization of organophosphine/phosphite stabilized N-silver(I) succinimide: crystal structure of [(Ph3P)3·AgNC4H4O2]. Polyhedron 28:1191–1195. doi: 10.1016/j.poly.2009.02.021
Lu X, Heilman JM, Blans P, Fishbein JC (2005) The structure of DNA dictates purine atom site selectivity in alkylation by primary diazonium ions. Chem Res Toxicol 18:1462–1470. doi: 10.1021/tx0501334
Rick SW, Stuart SJ, Berne BJ (1994) Dynamical fluctuating charge force fields : application to liquid water. J Chem Phys 101:6141–6156
Rick SW (2001) Simulations of ice and liquid water over a range of temperatures using the fluctuating charge model. J Chem Phys 114:2276–2283. doi: 10.1063/1.1336805
Rick SW, Berne BJ (1996) Dynamical fluctuating charge force fields: the aqueous solvation of amides. J Am Chem Soc 118:672–679
Llanta E, Ando K, Rey R (2001) Fluctuating charge study of polarization effects in chlorinated organic liquids. J Phys Chem B 105:7783–7791