Nucleocytoplasmic Shuttling of HMGB1 Is Regulated by Phosphorylation That Redirects It toward Secretion

Journal of Immunology - Tập 177 Số 11 - Trang 7889-7897 - 2006
Ju Ho Youn1, Jeon‐Soo Shin1,2,3
1*Department of Microbiology, Brain Korea 21 Project for Medical Science,
2†Institute for Immunology and Immunological Diseases, and
3‡National Core Research Center for Nanomedical Technology, Yonsei University College of Medicine, Seoul, Korea

Tóm tắt

Abstract The high mobility group box 1 (HMGB1) protein can be secreted by activated monocytes and macrophages and functions as a late mediator of sepsis. HMGB1 contains two nuclear localization signals (NLSs) for controlled nuclear transport, and acetylation of both NLSs of HMGB1 is involved in nuclear transport toward secretion. However, phosphorylation of HMGB1 and its relation to nuclear transport have not been shown. We show here that HMGB1 is phosphorylated and dynamically shuttled between cytoplasmic and nuclear compartments according to its phosphorylation state. Phosphorylation of HMGB1 was detected by metabolic labeling and Western blot analysis after treatments with TNF-α and okadaic acid, a phosphatase inhibitor. Hyperphosphorylated HMGB1 in RAW 264.7 and human monocytes was relocated to the cytoplasm. In a nuclear import assay, phosphorylated HMGB1 in the cytoplasm did not enter the nucleus. We mutated serine residues of either or both NLSs of HMGB1 to glutamic acid to simulate a phosphorylated state and examined the binding of HMGB1 to karyopherin-α1, which was identified as the nuclear import protein for HMGB1 in this study. Substitution to glutamic acid in either NLSs decreased the binding with karyopherin-α1 by ∼ 50%; however, substitution of both NLSs showed no binding, and HMGB1 was relocated to the cytoplasm and subsequently secreted. These data support the hypothesis that HMGB1 could be phosphorylated and that the direction of transport is regulated by phosphorylation of both NLS regions.

Từ khóa


Tài liệu tham khảo

Goodwin, G. H., C. Sanders, E. W. Johns. 1973. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids. Eur. J. Biochem. 38: 14-19.

Lotze, M. T., K. J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat. Rev. Immunol. 5: 331-342.

Merenmies, J., R. Pihlaskari, J. Laitinen, J. Wartiovaara, H. Rauvala. 1991. 30-kDa heparin-binding protein of brain (amphoterin) involved in neurite outgrowth. Amino acid sequence and localization in the filopodia of the advancing plasma membrane. J. Biol. Chem. 266: 16722-16729.

Taguchi, A., D. C. Blood, G. del Toro, A. Canet, D. C. Lee, W. Qu, N. Tanji, Y. Lu, E. Lalla, C. Fu, et al 2000. Blockade of RAGE-amphoterin signalling suppresses tumour growth and metastases. Nature 405: 354-360.

Scaffidi, P., T. Misteli, M. E. Bianchi. 2002. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature 418: 191-195.

Wang, H., O. Bloom, M. Zhang, J. M. Vishnubhakat, M. Ombrellino, J. Che, A. Frazier, H. Yang, S. Ivanova, L. Borovikova, et al 1999. HMG-1 as a late mediator of endotoxin lethality in mice. Science 285: 248-251.

Sunden-Cullberg, J., A. Norrby-Teglund, A. Rouhiainen, H. Rauvala, G. Herman, K. J. Tracey, M. L. Lee, J. Andersson, L. Tokics, C. J. Treutiger. 2005. Persistent elevation of high mobility group box-1 protein (HMGB1) in patients with severe sepsis and septic shock. Crit. Care Med. 33: 564-573.

Ombrellino, M., H. Wang, M. S. Ajemian, A. Talhouk, L. A. Scher, S. G. Friedman, K. J. Tracey. 1999. Increased serum concentrations of high-mobility-group protein 1 in haemorrhagic shock. Lancet 354: 1446-1447.

Yang, H., M. Ochani, J. Li, X. Qiang, M. Tanovic, H. E. Harris, S. M. Susarla, L. Ulloa, H. Wang, R. DiRaimo, et al 2004. Reversing established sepsis with antagonists of endogenous high-mobility group box 1. Proc. Natl. Acad. Sci. USA 101: 296-301.

Bonaldi, T., F. Talamo, P. Scaffidi, D. Ferrera, A. Porto, A. Bachi, A. Rubartelli, A. Agresti, M. E. Bianchi. 2003. Monocytic cells hyperacetylate chromatin protein HMGB1 to redirect it towards secretion. EMBO J. 22: 5551-5560.

Semino, C., G. Angelini, A. Poggi, A. Rubartelli. 2005. NK/iDC interaction results in IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and release of the DC maturation factor HMGB1. Blood 106: 609-616.

Degryse, B., T. Bonaldi, P. Scaffidi, S. Muller, M. Resnati, F. Sanvito, G. Arrigoni, M. E. Bianchi. 2001. The high mobility group (HMG) boxes of the nuclear protein HMG1 induce chemotaxis and cytoskeleton reorganization in rat smooth muscle cells. J. Cell Biol. 152: 1197-1206.

Rouhiainen, A., J. Kuja-Panula, E. Wilkman, J. Pakkanen, J. Stenfors, R. K. Tuominen, M. Lepantalo, O. Carpen, J. Parkkinen, H. Rauvala. 2004. Regulation of monocyte migration by amphoterin (HMGB1). Blood 104: 1174-1182.

Andersson, U., H. Wang, K. Palmblad, A. C. Aveberger, O. Bloom, H. Erlandsson-Harris, A. Janson, R. Kokkola, M. Zhang, H. Yang, K. J. Tracey. 2000. High mobility group 1 protein (HMG-1) stimulates proinflammatory cytokine synthesis in human monocytes. J. Exp. Med. 192: 565-570.

Messmer, D., H. Yang, G. Telusma, F. Knoll, J. Li, B. Messmer, K. J. Tracey, N. Chiorazzi. 2004. High mobility group box protein 1: an endogenous signal for dendritic cell maturation and Th1 polarization. J. Immunol. 173: 307-313.

Bustin, M., D. A. Lehn, D. Landsman. 1990. Structural features of the HMG chromosomal proteins and their genes. Biochim. Biophys. Acta 1049: 231-243.

Gardella, S., C. Andrei, D. Ferrera, L. V. Lotti, M. R. Torrisi, M. E. Bianchi, A. Rubartelli. 2002. The nuclear protein HMGB1 is secreted by monocytes via a non-classical, vesicle-mediated secretory pathway. EMBO Rep. 3: 995-1001.

Stemmer, C., D. J. Leeming, L. Franssen, R. Grimm, K. D. Grasser. 2003. Phosphorylation of maize and Arabidopsis HMGB proteins by protein kinase CK2α. Biochemistry 42: 3503-3508.

Stemmer, C., A. Schwander, G. Bauw, P. Fojan, K. D. Grasser. 2002. Protein kinase CK2 differentially phosphorylates maize chromosomal high mobility group B (HMGB) proteins modulating their stability and DNA interactions. J. Biol. Chem. 277: 1092-1098.

Briggs, L. J., D. Stein, J. Goltz, V. C. Corrigan, A. Efthymiadis, S. Hubner, D. A. Jans. 1998. The cAMP-dependent protein kinase site (Ser312) enhances dorsal nuclear import through facilitating nuclear localization sequence/importin interaction. J. Biol. Chem. 273: 22745-22752.

Zhang, F., R. L. White, K. L. Neufeld. 2000. Phosphorylation near nuclear localization signal regulates nuclear import of adenomatous polyposis coli protein. Proc. Natl. Acad. Sci. USA 97: 12577-12582.

Conti, E., M. Uy, L. Leighton, G. Blobel, J. Kuriyan. 1998. Crystallographic analysis of the recognition of a nuclear localization signal by the nuclear import factor karyopherin α. Cell 94: 193-204.

Bird, C. H., E. J. Blink, C. E. Hirst, M. S. Buzza, P. M. Steele, J. Sun, D. A. Jans, P. I. Bird. 2001. Nucleocytoplasmic distribution of the ovalbumin serpin PI-9 requires a nonconventional nuclear import pathway and the export factor Crm1. Mol. Cell. Biol. 21: 5396-5407.

Adam, S. A., R. S. Marr, L. Gerace. 1990. Nuclear protein import in permeabilized mammalian cells requires soluble cytoplasmic factors. J. Cell Biol. 111: 807-816.

Bialojan, C., A. Takai. 1988. Inhibitory effect of a marine-sponge toxin, okadaic acid, on protein phosphatases. Specificity and kinetics. Biochem. J. 256: 283-290.

Cobb, J., B. Cargile, M. A. Handel. 1999. Acquisition of competence to condense metaphase I chromosomes during spermatogenesis. Dev. Biol. 205: 49-64.

Taniguchi, N., K. Kawahara, K. Yone, T. Hashiguchi, M. Yamakuchi, M. Goto, K. Inoue, S. Yamada, K. Ijiri, S. Matsunaga, et al 2003. High mobility group box chromosomal protein 1 plays a role in the pathogenesis of rheumatoid arthritis as a novel cytokine. Arthritis Rheum. 48: 971-981.

Rendon-Mitchell, B., M. Ochani, J. Li, J. Han, H. Wang, H. Yang, S. Susarla, C. Czura, R. A. Mitchell, G. Chen, et al 2003. IFN-γ induces high mobility group box 1 protein release partly through a TNF-dependent mechanism. J. Immunol. 170: 3890-3897.

Macara, I. G.. 2001. Transport into and out of the nucleus. Microbiol. Mol. Biol. Rev. 65: 570-594.

Kurisaki, A., S. Kose, Y. Yoneda, C. H. Heldin, A. Moustakas. 2001. Transforming growth factor-β induces nuclear import of Smad3 in an importin-β1 and Ran-dependent manner. Mol. Biol. Cell 12: 1079-1091.

Liu, X., Y. Sun, S. N. Constantinescu, E. Karam, R. A. Weinberg, H. F. Lodish. 1997. Transforming growth factor β-induced phosphorylation of Smad3 is required for growth inhibition and transcriptional induction in epithelial cells. Proc. Natl. Acad. Sci. USA 94: 10669-10674.

Dumitriu, I. E., P. Baruah, B. Valentinis, R. E. Voll, M. Herrmann, P. P. Nawroth, B. Arnold, M. E. Bianchi, A. A. Manfredi, P. Rovere-Querini. 2005. Release of high mobility group box 1 by dendritic cells controls T cell activation via the receptor for advanced glycation end products. J. Immunol. 174: 7506-7515.

Xiao, D. M., J. H. Pak, X. Wang, T. Sato, F. L. Huang, H. C. Chen, K. P. Huang. 2000. Phosphorylation of HMG-I by protein kinase C attenuates its binding affinity to the promoter regions of protein kinase C γ and neurogranin/RC3 genes. J. Neurochem. 74: 392-399.

Schwanbeck, R., J. R. Wisniewski. 1997. Cdc2 and mitogen-activated protein kinases modulate DNA binding properties of the putative transcriptional regulator Chironomus high mobility group protein I. J. Biol. Chem. 272: 27476-27483.

Wisniewski, J. R., E. Schulze, B. Sapetto. 1994. DNA binding and nuclear translocation of insect high-mobility-group-protein-1 (HMG1) proteins are inhibited by phosphorylation. Eur. J. Biochem. 225: 687-693.

Ramachandran, C., P. Yau, E. M. Bradbury, G. Shyamala, H. Yasuda, D. A. Walsh. 1984. Phosphorylation of high-mobility-group proteins by the calcium-phospholipid-dependent protein kinase and the cyclic AMP-dependent protein kinase. J. Biol. Chem. 259: 13495-13503.

Knapp, S., S. Muller, G. Digilio, T. Bonaldi, M. E. Bianchi, G. Musco. 2004. The long acidic tail of high mobility group box 1 (HMGB1) protein forms an extended and flexible structure that interacts with specific residues within and between the HMG boxes. Biochemistry 43: 11992-11997.

Pallier, C., P. Scaffidi, S. Chopineau-Proust, A. Agresti, P. Nordmann, M. E. Bianchi, V. Marechal. 2003. Association of chromatin proteins high mobility group box (HMGB) 1 and HMGB2 with mitotic chromosomes. Mol. Biol. Cell 14: 3414-3426.

Shirakawa, H., T. Tanigawa, S. Sugiyama, M. Kobayashi, T. Terashima, K. Yoshida, T. Arai, M. Yoshida. 1997. Nuclear accumulation of HMG2 protein is mediated by basic regions interspaced with a long DNA-binding sequence, and retention within the nucleus requires the acidic carboxyl terminus. Biochemistry 36: 5992-5999.

Calogero, S., F. Grassi, A. Aguzzi, T. Voigtlander, P. Ferrier, S. Ferrari, M. E. Bianchi. 1999. The lack of chromosomal protein Hmg1 does not disrupt cell growth but causes lethal hypoglycaemia in newborn mice. Nat. Genet. 22: 276-280.

Ronfani, L., M. Ferraguti, L. Croci, C. E. Ovitt, H. R. Scholer, G. G. Consalez, M. E. Bianchi. 2001. Reduced fertility and spermatogenesis defects in mice lacking chromosomal protein Hmgb2. Development 128: 1265-1273.