Nuclei size distribution modelling in wet granulation

Chemical Engineering Science: X - Tập 4 - Trang 100038 - 2019
Stefan Bellinghausen1, Emmanuela Gavi2, Laura Jerke2, Pranay K. Ghosh2, Agba D. Salman1, James D. Litster1
1Department of Chemical and Biological Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
2Small Molecule Technical Development Formulation, F. Hoffmann-La Roche AG, Grenzacherstrasse 124, 4070 Basel, Switzerland

Tài liệu tham khảo

Andrews, 2005, vol. 1 Ax, 2008, Influence of liquid binder dispersion on agglomeration in an intensive mixer, Powder Technol., 179, 190, 10.1016/j.powtec.2007.06.010 Barrasso, 2015, Multi-dimensional population balance model development and validation for a twin screw granulation process, Powder Technol., 270, 612, 10.1016/j.powtec.2014.06.035 Barrasso, 2016, Qualitative assessment of a multi-scale, compartmental PBM–DEM model of a continuous twin-screw wet granulation process, J. Pharmaceut. Innovat., 11, 231, 10.1007/s12247-015-9240-7 Biggs, 2003, Coupling granule properties and granulation rates in high-shear granulation, Powder Technol., 130, 162, 10.1016/S0032-5910(02)00260-7 Bouffard, 2012, A multiscale model for the simulation of granulation in rotor-based equipment, Chem. Eng. Sci., 81, 106, 10.1016/j.ces.2012.06.025 Chaudhury, 2014, Population balance model development, validation, and prediction of CQAs of a high-shear wet granulation process: towards QbD in drug product pharmaceutical manufacturing, J. Pharmaceut. Innovat., 9, 53, 10.1007/s12247-014-9172-7 Chaudhury, 2017, Mechanistic modeling of high-shear and twin screw mixer granulation processes, 99 Darelius, 2006, A volume-based multi-dimensional population balance approach for modelling high shear granulation, Chem. Eng. Sci., 61, 2482, 10.1016/j.ces.2005.11.016 Davis, 2016 Dhanarajan, 2007, An energy-based population-balance approach to model granule growth and breakage in high-shear wet granulation processes, AAPS PharmSciTech, 8, E118, 10.1208/pt0803066 Hapgood, 2002, Drop penetration into porous powder beds, J. Colloid Interface Sci., 253, 353, 10.1006/jcis.2002.8527 Hapgood, 2003, Nucleation regime map for liquid bound granules, AIChE J., 49, 350, 10.1002/aic.690490207 Hapgood, 2004, Dimensionless spray flux in wet granulation: Monte-Carlo simulations and experimental validation, Powder Technol., 141, 20, 10.1016/j.powtec.2004.02.005 Hapgood, 2009, A method to predict nuclei size distributions for use in models of wet granulation, Adv. Powder Technol., 20, 293, 10.1016/j.apt.2008.09.004 Hounslow, 2009, Kinetic models for granule nucleation by the immersion mechanism, Powder Technol., 189, 177, 10.1016/j.powtec.2008.04.008 Kariuki, 2013, Distribution nucleation: quantifying liquid distribution on the particle surface using the dimensionless particle coating number, Chem. Eng. Sci., 92, 134, 10.1016/j.ces.2013.01.010 Kastner, 2013, Impact of powder characteristics on a particle granulation model, Chem. Eng. Sci., 97, 282, 10.1016/j.ces.2013.04.032 Kumar, 2013, Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production–a critical review, Eur. J. Pharm. Biopharm., 85, 814, 10.1016/j.ejpb.2013.09.013 Kumar, 2016, Model-based analysis of a twin-screw wet granulation system for continuous solid dosage manufacturing, Comput. Chem. Eng., 89, 62, 10.1016/j.compchemeng.2016.03.007 Le, 2009, The kinetics of the granulation process: right from the early stages, Powder Technol., 189, 149, 10.1016/j.powtec.2008.04.018 Lee, 2017, Development of a multi-compartment population balance model for high-shear wet granulation with discrete element method, Comput. Chem. Eng., 99, 171, 10.1016/j.compchemeng.2017.01.022 Litster, 2002, Scale-up of mixer granulators for effective liquid distribution, Powder Technol., 124, 272, 10.1016/S0032-5910(02)00023-2 Litster, 2001, Liquid distribution in wet granulation: dimensionless spray flux, Powder Technol., 114, 32, 10.1016/S0032-5910(00)00259-X Liu, 2009, Wet granule breakage in a breakage only high-hear mixer: Effect of formulation properties on breakage behaviour, Powder Technol., 189, 158, 10.1016/j.powtec.2008.04.029 Liu, 2013, A nuclei size distribution model including nuclei breakage, Chem. Eng. Sci., 86, 19, 10.1016/j.ces.2012.04.009 Oullion, 2009, Simulating the early stage of high-shear granulation using a two-dimensional Monte-Carlo approach, Chem. Eng. Sci., 64, 673, 10.1016/j.ces.2008.08.014 Pitt, 2018, Kinetics of immersion nucleation driven by surface tension, Powder Technol., 335, 62, 10.1016/j.powtec.2018.05.001 Pohlman, 2015, Coalescence model for induction growth behavior in high shear granulation, Powder Technol., 270, 435, 10.1016/j.powtec.2014.07.016 Poon, 2008, A three-dimensional population balance model of granulation with a mechanistic representation of the nucleation and aggregation phenomena, Chem. Eng. Sci., 63, 1315, 10.1016/j.ces.2007.07.048 Poon, 2009, Experimental validation studies on a multi-dimensional and multi-scale population balance model of batch granulation, Chem. Eng. Sci., 64, 775, 10.1016/j.ces.2008.08.037 Ramachandran, 2009, A mechanistic model for breakage in population balances of granulation: Theoretical kernel development and experimental validation, Chem. Eng. Res. Des., 87, 598, 10.1016/j.cherd.2008.11.007 Ramkrishna, 2002, Population balance modeling. promise for the future, Chem. Eng. Sci., 57, 595, 10.1016/S0009-2509(01)00386-4 Sanders, 2003, Development of a predictive high-shear granulation model, Powder Technol., 138, 18, 10.1016/j.powtec.2003.08.046 Sehmbi, 2019 Tardos, 1997, Critical parameters and limiting conditions in binder granulation of fine powders, Powder Technol., 94, 245, 10.1016/S0032-5910(97)03321-4 Verkoeijen, 2002, Population balances for particulate processes-a volume approach, Chem. Eng. Sci., 57, 2287, 10.1016/S0009-2509(02)00118-5 Wauters, 2002, Liquid distribution as a means to describing the granule growth mechanism, Powder Technol., 123, 166, 10.1016/S0032-5910(01)00446-6 Wauters, 2003, A population balance model for high shear granulation, Chem. Eng. Commun., 190, 1309, 10.1080/00986440302147 Wildeboer, 2007, A novel nucleation apparatus for regime separated granulation, Powder Technol., 171, 96, 10.1016/j.powtec.2006.09.008 Wildeboer, 2005, Modelling nucleation in wet granulation, Chem. Eng. Sci., 60, 3751, 10.1016/j.ces.2005.02.005 Yu, 2016, Representing spray zone with cross flow as a well-mixed compartment in a high shear granulator, Powder Technol., 297, 429, 10.1016/j.powtec.2016.04.053 Yu, 2017, A compartmental CFD–PBM model of high shear wet granulation, AIChE J., 63, 438, 10.1002/aic.15401 Žižek, 2013, High shear granulation of dolomite–I: Effect of shear regime on process kinetics, Chem. Eng. Res. Des., 91, 70, 10.1016/j.cherd.2012.06.014