Nuclear prelamin a recognition factor and iron dysregulation in multiple sclerosis

Metabolic Brain Disease - Tập 35 - Trang 275-282 - 2019
Di Ding1, Anddre Osmar Valdivia2,3, Sanjoy K. Bhattacharya2,3
1Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami, Miami, USA
2Department of Ophthalmology & Bascom Palmer Eye Institute, University of Miami, Miami, USA
3Neuroscience Graduate Program, University of Miami, Miami, USA

Tóm tắt

Dysregulation of iron metabolism and aberrant iron deposition has been associated with multiple sclerosis. However, the factors that contribute to this pathological state remain to be understood. In this study, human multiple sclerosis and mice brain samples were analyzed through mass spectrometry as well as histological and immunoblot techniques, which demonstrated that iron deposition is associated with increased levels of nuclear prelamin A recognition factor (NARF). NARF is a protein associated with the mitochondria which has also been linked to mitochondrial defects in multiple sclerosis. We report NARF to be associated in multiple sclerosis pathology and aberrant iron deposition.

Tài liệu tham khảo

Adisetiyo V, Helpern JA (2015) Brain iron: a promising noninvasive biomarker of attention-deficit/hyperactivity disorder that warrants further investigation. Biomark Med 9(5):403–406. https://doi.org/10.2217/bmm.15.9 Bagnato F, Hametner S, Yao B, van Gelderen P, Merkle H, Cantor FK, Lassmann H, Duyn JH (2011) Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 tesla. Brain 134(Pt 12):3602–3615. https://doi.org/10.1093/brain/awr278 Ban M, Elson J, Walton A, Turnbull D, Compston A, Chinnery P, Sawcer S (2008) Investigation of the role of mitochondrial DNA in multiple sclerosis susceptibility. PLoS One 3(8):e2891. https://doi.org/10.1371/journal.pone.0002891 Cass WA, Grondin R, Andersen AH, Zhang Z, Hardy PA, Hussey-Andersen LK, Rayens WS, Gerhardt GA, Gash DM (2007) Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys. Neurobiol Aging 28(2):258–271. https://doi.org/10.1016/j.neurobiolaging.2005.12.010 Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558. https://doi.org/10.1038/nri3871 Di Lorenzo D, Biasiotto G, Zanella I (2014) Source of iron overload in multiple sclerosis. Cell Mol Life 71:3187–3189. https://doi.org/10.1007/s00018-014-1641-0 Ding D, Enriquez-Algeciras M, Valdivia AO, Torres J, Pole C, Thompson JW, Chou TH, Perez-Pinzon M, Porciatti V, Udin S, Nestler E, Bhattacharya SK (2018) The role of Deimination in regenerative reprogramming of neurons. Mol Neurobiol 56:2618–2639. https://doi.org/10.1007/s12035-018-1262-y Enriquez-Algeciras M, Ding D, Chou T-H, Wang J, Padgett KR, Porciatti V, Bhattacharya SK (2011) Evaluation of a transgenic mouse model of multiple sclerosis with noninvasive methods. Invest Ophthalmol Vis Sci 52(5):2405–2411. https://doi.org/10.1167/iovs.10-6425 Goldenberg MM (2012) Multiple sclerosis review. Pharmacy and Therapeutics 37(3):175–184 Hadzhieva M, Kirches E, Mawrin C (2014) Review: iron metabolism and the role of iron in neurodegenerative disorders. Neuropathol Appl Neurobiol 40(3):240–257. https://doi.org/10.1111/nan.12096 Hans L (2010) What drives disease in multiple sclerosis: inflammation or neurodegeneration? Clin Exp Neuroimmunology 1(1):2–11. https://doi.org/10.1111/j.1759-1961.2009.00003.x Lee DL, Strathmann FG, Gelein R, Walton J, Mayer-Proschel M (2012) Iron deficiency disrupts axon maturation of the developing auditory nerve. J Neurosci 32(14):5010–5015. https://doi.org/10.1523/jneurosci.0526-12.2012 Lu F, Selak M, O'Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177(2):95–103 Madsen E, Gitlin JD (2007) Copper and iron disorders of the brain. Annu Rev Neurosci 30:317–337. https://doi.org/10.1146/annurev.neuro.30.051606.094232 Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. The Lancet Neurology 14(2):183–193. https://doi.org/10.1016/s1474-4422(14)70256-x Mastronardi FG, Ackerley CA, Arsenault L, Roots BI, Moscarello MA (1993) Demyelination in a transgenic mouse: a model for multiple sclerosis. J Neurosci Res 36(3):315–324. https://doi.org/10.1002/jnr.490360309 Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Nunez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105. https://doi.org/10.1016/j.mito.2015.02.001 Modica CM, Zivadinov R, Dwyer MG, Bergsland N, Weeks AR, Benedict RH (2014) Iron and volume in the deep gray matter: association with cognitive impairment in multiple sclerosis. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A3998 Nylander A, Hafler DA (2012) Multiple sclerosis. J Clin Invest 122(4):1180–1188. https://doi.org/10.1172/JCI58649 Patergnani S, Fossati V, Bonora M, Giorgi C, Marchi S, Missiroli S, Rusielewicz T, Wieckowski MR, Pinton P (2017) Mitochondria in multiple sclerosis: molecular mechanisms of pathogenesis. Int Rev Cell Mol Biol 328:49–103. https://doi.org/10.1016/bs.ircmb.2016.08.003 Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G (2015) Animal models of multiple sclerosis. Eur J Pharmacol 759:182–191. https://doi.org/10.1016/j.ejphar.2015.03.042 Richardson DR, Lane DJ, Becker EM, Huang ML, Whitnall M, Suryo Rahmanto Y, Sheftel AD, Ponka P (2010) Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A 107(24):10775–10782. https://doi.org/10.1073/pnas.0912925107 Stankiewicz J, Panter SS, Neema M, Arora A, Batt CE, Bakshi R (2007) Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 4(3):371–386. https://doi.org/10.1016/j.nurt.2007.05.006 Stankiewicz JM, Neema M, Ceccarelli A (2014) Iron and multiple sclerosis. Neurobiol Aging 35(Suppl 2):S51–S58. https://doi.org/10.1016/j.neurobiolaging.2014.03.039 Stephenson E, Nathoo N, Mahjoub Y, Dunn JF, Yong VW (2014) Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol 10(8):459–468. https://doi.org/10.1038/nrneurol.2014.118 Tourdias T, Roggerone S, Filippi M, Kanagaki M, Rovaris M, Miller DH, Petry KG, Brochet B, Pruvo J-P, Radüe E-W, Dousset V (2012) Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium- and Superparamagnetic Iron oxide–enhanced MR imaging. Radiology 264(1):225–233. https://doi.org/10.1148/radiol.12111416 Travers TS, Harlow L, Rosas IO, Gochuico BR, Mikuls TR, Bhattacharya SK, Camacho CJ, Ascherman DP (2016) Extensive Citrullination promotes immunogenicity of HSP90 through protein unfolding and exposure of cryptic epitopes. Journal of immunology 197(5):1926–1936. https://doi.org/10.4049/jimmunol.1600162 Weisfeld-Adams JD, Katz Sand IB, Honce JM, Lublin FD (2015) Differential diagnosis of Mendelian and mitochondrial disorders in patients with suspected multiple sclerosis. Brain 138(Pt 3):517–539. https://doi.org/10.1093/brain/awu397 Yu X, Koczan D, Sulonen AM, Akkad DA, Kroner A, Comabella M, Costa G, Corongiu D, Goertsches R, Camina-Tato M, Thiesen HJ, Nyland HI, Mork SJ, Montalban X, Rieckmann P, Marrosu MG, Myhr KM, Epplen JT, Saarela J, Ibrahim SM (2008) mtDNA nt13708A variant increases the risk of multiple sclerosis. PLoS One 3(2):e1530. https://doi.org/10.1371/journal.pone.0001530