Nuclear prelamin a recognition factor and iron dysregulation in multiple sclerosis
Tóm tắt
Dysregulation of iron metabolism and aberrant iron deposition has been associated with multiple sclerosis. However, the factors that contribute to this pathological state remain to be understood. In this study, human multiple sclerosis and mice brain samples were analyzed through mass spectrometry as well as histological and immunoblot techniques, which demonstrated that iron deposition is associated with increased levels of nuclear prelamin A recognition factor (NARF). NARF is a protein associated with the mitochondria which has also been linked to mitochondrial defects in multiple sclerosis. We report NARF to be associated in multiple sclerosis pathology and aberrant iron deposition.
Tài liệu tham khảo
Adisetiyo V, Helpern JA (2015) Brain iron: a promising noninvasive biomarker of attention-deficit/hyperactivity disorder that warrants further investigation. Biomark Med 9(5):403–406. https://doi.org/10.2217/bmm.15.9
Bagnato F, Hametner S, Yao B, van Gelderen P, Merkle H, Cantor FK, Lassmann H, Duyn JH (2011) Tracking iron in multiple sclerosis: a combined imaging and histopathological study at 7 tesla. Brain 134(Pt 12):3602–3615. https://doi.org/10.1093/brain/awr278
Ban M, Elson J, Walton A, Turnbull D, Compston A, Chinnery P, Sawcer S (2008) Investigation of the role of mitochondrial DNA in multiple sclerosis susceptibility. PLoS One 3(8):e2891. https://doi.org/10.1371/journal.pone.0002891
Cass WA, Grondin R, Andersen AH, Zhang Z, Hardy PA, Hussey-Andersen LK, Rayens WS, Gerhardt GA, Gash DM (2007) Iron accumulation in the striatum predicts aging-related decline in motor function in rhesus monkeys. Neurobiol Aging 28(2):258–271. https://doi.org/10.1016/j.neurobiolaging.2005.12.010
Dendrou CA, Fugger L, Friese MA (2015) Immunopathology of multiple sclerosis. Nat Rev Immunol 15:545–558. https://doi.org/10.1038/nri3871
Di Lorenzo D, Biasiotto G, Zanella I (2014) Source of iron overload in multiple sclerosis. Cell Mol Life 71:3187–3189. https://doi.org/10.1007/s00018-014-1641-0
Ding D, Enriquez-Algeciras M, Valdivia AO, Torres J, Pole C, Thompson JW, Chou TH, Perez-Pinzon M, Porciatti V, Udin S, Nestler E, Bhattacharya SK (2018) The role of Deimination in regenerative reprogramming of neurons. Mol Neurobiol 56:2618–2639. https://doi.org/10.1007/s12035-018-1262-y
Enriquez-Algeciras M, Ding D, Chou T-H, Wang J, Padgett KR, Porciatti V, Bhattacharya SK (2011) Evaluation of a transgenic mouse model of multiple sclerosis with noninvasive methods. Invest Ophthalmol Vis Sci 52(5):2405–2411. https://doi.org/10.1167/iovs.10-6425
Goldenberg MM (2012) Multiple sclerosis review. Pharmacy and Therapeutics 37(3):175–184
Hadzhieva M, Kirches E, Mawrin C (2014) Review: iron metabolism and the role of iron in neurodegenerative disorders. Neuropathol Appl Neurobiol 40(3):240–257. https://doi.org/10.1111/nan.12096
Hans L (2010) What drives disease in multiple sclerosis: inflammation or neurodegeneration? Clin Exp Neuroimmunology 1(1):2–11. https://doi.org/10.1111/j.1759-1961.2009.00003.x
Lee DL, Strathmann FG, Gelein R, Walton J, Mayer-Proschel M (2012) Iron deficiency disrupts axon maturation of the developing auditory nerve. J Neurosci 32(14):5010–5015. https://doi.org/10.1523/jneurosci.0526-12.2012
Lu F, Selak M, O'Connor J, Croul S, Lorenzana C, Butunoi C, Kalman B (2000) Oxidative damage to mitochondrial DNA and activity of mitochondrial enzymes in chronic active lesions of multiple sclerosis. J Neurol Sci 177(2):95–103
Madsen E, Gitlin JD (2007) Copper and iron disorders of the brain. Annu Rev Neurosci 30:317–337. https://doi.org/10.1146/annurev.neuro.30.051606.094232
Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. The Lancet Neurology 14(2):183–193. https://doi.org/10.1016/s1474-4422(14)70256-x
Mastronardi FG, Ackerley CA, Arsenault L, Roots BI, Moscarello MA (1993) Demyelination in a transgenic mouse: a model for multiple sclerosis. J Neurosci Res 36(3):315–324. https://doi.org/10.1002/jnr.490360309
Mena NP, Urrutia PJ, Lourido F, Carrasco CM, Nunez MT (2015) Mitochondrial iron homeostasis and its dysfunctions in neurodegenerative disorders. Mitochondrion 21:92–105. https://doi.org/10.1016/j.mito.2015.02.001
Modica CM, Zivadinov R, Dwyer MG, Bergsland N, Weeks AR, Benedict RH (2014) Iron and volume in the deep gray matter: association with cognitive impairment in multiple sclerosis. AJNR Am J Neuroradiol. https://doi.org/10.3174/ajnr.A3998
Nylander A, Hafler DA (2012) Multiple sclerosis. J Clin Invest 122(4):1180–1188. https://doi.org/10.1172/JCI58649
Patergnani S, Fossati V, Bonora M, Giorgi C, Marchi S, Missiroli S, Rusielewicz T, Wieckowski MR, Pinton P (2017) Mitochondria in multiple sclerosis: molecular mechanisms of pathogenesis. Int Rev Cell Mol Biol 328:49–103. https://doi.org/10.1016/bs.ircmb.2016.08.003
Procaccini C, De Rosa V, Pucino V, Formisano L, Matarese G (2015) Animal models of multiple sclerosis. Eur J Pharmacol 759:182–191. https://doi.org/10.1016/j.ejphar.2015.03.042
Richardson DR, Lane DJ, Becker EM, Huang ML, Whitnall M, Suryo Rahmanto Y, Sheftel AD, Ponka P (2010) Mitochondrial iron trafficking and the integration of iron metabolism between the mitochondrion and cytosol. Proc Natl Acad Sci U S A 107(24):10775–10782. https://doi.org/10.1073/pnas.0912925107
Stankiewicz J, Panter SS, Neema M, Arora A, Batt CE, Bakshi R (2007) Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics : the journal of the American Society for Experimental NeuroTherapeutics 4(3):371–386. https://doi.org/10.1016/j.nurt.2007.05.006
Stankiewicz JM, Neema M, Ceccarelli A (2014) Iron and multiple sclerosis. Neurobiol Aging 35(Suppl 2):S51–S58. https://doi.org/10.1016/j.neurobiolaging.2014.03.039
Stephenson E, Nathoo N, Mahjoub Y, Dunn JF, Yong VW (2014) Iron in multiple sclerosis: roles in neurodegeneration and repair. Nat Rev Neurol 10(8):459–468. https://doi.org/10.1038/nrneurol.2014.118
Tourdias T, Roggerone S, Filippi M, Kanagaki M, Rovaris M, Miller DH, Petry KG, Brochet B, Pruvo J-P, Radüe E-W, Dousset V (2012) Assessment of disease activity in multiple sclerosis phenotypes with combined gadolinium- and Superparamagnetic Iron oxide–enhanced MR imaging. Radiology 264(1):225–233. https://doi.org/10.1148/radiol.12111416
Travers TS, Harlow L, Rosas IO, Gochuico BR, Mikuls TR, Bhattacharya SK, Camacho CJ, Ascherman DP (2016) Extensive Citrullination promotes immunogenicity of HSP90 through protein unfolding and exposure of cryptic epitopes. Journal of immunology 197(5):1926–1936. https://doi.org/10.4049/jimmunol.1600162
Weisfeld-Adams JD, Katz Sand IB, Honce JM, Lublin FD (2015) Differential diagnosis of Mendelian and mitochondrial disorders in patients with suspected multiple sclerosis. Brain 138(Pt 3):517–539. https://doi.org/10.1093/brain/awu397
Yu X, Koczan D, Sulonen AM, Akkad DA, Kroner A, Comabella M, Costa G, Corongiu D, Goertsches R, Camina-Tato M, Thiesen HJ, Nyland HI, Mork SJ, Montalban X, Rieckmann P, Marrosu MG, Myhr KM, Epplen JT, Saarela J, Ibrahim SM (2008) mtDNA nt13708A variant increases the risk of multiple sclerosis. PLoS One 3(2):e1530. https://doi.org/10.1371/journal.pone.0001530