Nuclear phylotranscriptomics and phylogenomics support numerous polyploidization events and hypotheses for the evolution of rhizobial nitrogen-fixing symbiosis in Fabaceae
Tài liệu tham khảo
Afkhami, 2018, Symbioses with nitrogen-fixing bacteria: nodulation and phylogenetic data across legume genera, Ecology, 99, 502, 10.1002/ecy.2110
Barker, 1990, Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis, Plant Mol. Biol. Rep., 8, 40, 10.1007/BF02668879
Battenberg, 2018, Comparative transcriptomic analysis of two actinorhizal plants and the legume Medicago truncatula supports the homology of root nodule symbioses and is congruent with a two-step process of evolution in the nitrogen-fixing clade of angiosperms, Front. Plant Sci., 9, 1256, 10.3389/fpls.2018.01256
Beaulieu, 2013, Identifying hidden rate changes in the evolution of a binary morphological character: the evolution of plant habit in Campanulid angiosperms, Syst. Biol., 62, 725, 10.1093/sysbio/syt034
Beerling, 2011, Convergent cenozoic CO2 history, Nat. Geosci., 4, 418, 10.1038/ngeo1186
Bell, 1981, Non-protein amino acids in the Leguminosae, 489
Benton, 2010, The origins of modern biodiversity on land, Philos. Trans. R. Soc. Lond. Ser. B: Biol. Sci., 365, 3667, 10.1098/rstb.2010.0269
Bertioli, 2016, The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut, Nat. Genet., 48, 438, 10.1038/ng.3517
Birky, 2001, The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models, Annu. Rev. Genet., 35, 125, 10.1146/annurev.genet.35.102401.090231
Bouchenak-Khelladi, 2010, The evolutionary history and biogeography of Mimosoideae (Leguminosae): an emphasis on frican acacias, Mol. Phylogen. Evol., 57, 495, 10.1016/j.ympev.2010.07.019
Bozsoki, 2020, Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity, Science, 369, 663, 10.1126/science.abb3377
Bruneau, 2001, Phylogenetic relationships in the Caesalpinioideae (Leguminosae) as inferred from chloroplast trnL intron sequences, Syst. Bot., 26, 487
Bruneau, 2008, Phylogenetic patterns and diversification in the caesalpinioid legumes, Botany, 86, 697, 10.1139/B08-058
Buendia, 2018, LysM receptor-like kinase and LysM receptor-like protein families: an update on phylogeny and functional characterization, Front. Plant Sci., 9, 1531, 10.3389/fpls.2018.01531
Cannon, 2015, Multiple polyploidy events in the early radiation of nodulating and nonnodulating legumes, Mol. Biol. Evol., 32, 193, 10.1093/molbev/msu296
Cannon, 2006, Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes, Proc. Natl. Acad. Sci. U S A, 103, 14959, 10.1073/pnas.0603228103
Capella-Gutierrez, 2009, trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics, 25, 1972, 10.1093/bioinformatics/btp348
Cardoso, 2012, Revisiting the phylogeny of papilionoid legumes: new insights from comprehensively sampled early-branching lineages, Am. J. Bot., 99, 1991, 10.3732/ajb.1200380
Cardoso, 2013, Reconstructing the deep-branching relationships of the papilionoid legumes, S. Afr. J. Bot., 89, 58, 10.1016/j.sajb.2013.05.001
Chappill, 1995, A phylogenetic assessment of tribe Acacieae, 77
Clavijo, 2015, The Casuarina NIN gene is transcriptionally activated throughout Frankia root infection as well as in response to bacterial diffusible signals, New Phytol., 208, 887, 10.1111/nph.13506
Condamine, 2013, Macroevolutionary perspectives to environmental change, Ecol. Lett., 16, 72, 10.1111/ele.12062
Davis, 2014, Plastid phylogenomics and green plant phylogeny: almost full circle but not quite there, BMC Biol., 12, 11, 10.1186/1741-7007-12-11
de la Estrella, 2018, A new phylogeny-based tribal classification of subfamily Detarioideae, an early branching clade of florally diverse tropical arborescent legumes, Sci. Rep., 8, 6884, 10.1038/s41598-018-24687-3
De Mita, 2014, Evolution of a symbiotic receptor through gene duplications in the legume–rhizobium mutualism, New Phytol., 201, 961, 10.1111/nph.12549
de Queiroz, 2015, A multilocus phylogenetic analysis reveals the monophyly of a recircumscribed papilionoid legume tribe Diocleae with well-supported generic relationships, Mol. Phylogen. Evol., 90, 1, 10.1016/j.ympev.2015.04.016
Dos Santos, 2012, Distribution of nitrogen fixation and nitrogenase-like sequences amongst microbial genomes, BMC Genomics, 13, 162, 10.1186/1471-2164-13-162
Doyle, 1977, Angiosperm pollen from the pre-Albian Lower Cretaceous of Equatorial Africa, Bull. Cent. Rech. Explor. Prod. Elf-aquitaine, 1, 451
Doyle, 1994, Phylogeny of the legume family: an approach to understanding the origins of nodulation, Annu. Rev. Ecol. Syst., 25, 325, 10.1146/annurev.es.25.110194.001545
Doyle, 1998, Phylogenetic perspectives on nodulation: evolving views of plants and symbiotic bacteria, Trends Plant Sci., 3, 473, 10.1016/S1360-1385(98)01340-5
Doyle, 2011, Phylogenetic perspectives on the origins of nodulation, Mol. Plant Microbe Interact., 24, 1289, 10.1094/MPMI-05-11-0114
Doyle, 2012, Polyploidy in legumes, 147
Doyle, 2016, Chasing unicorns: nodulation origins and the paradox of novelty, Am. J. Bot., 103, 1865, 10.3732/ajb.1600260
Doyle, 2010, Dating the origins of polyploidy events, New Phytol., 186, 73, 10.1111/j.1469-8137.2009.03118.x
Du, 2010, agriGO: a GO analysis toolkit for the agricultural community., Nucleic Acids Res, 38, W64, 10.1093/nar/gkq310
Ebersberger, 2009, HaMStR: profile hidden Markov model based search for orthologs in ESTs, BMC Evol. Biol., 9, 157, 10.1186/1471-2148-9-157
Egan, 2010, A comparison of global, gene-specific, soybean (Glycine max), Syst. Biol., 59, 534, 10.1093/sysbio/syq041
Egan, 2019, Advances in legume research in the genomics era, Aust. Syst. Bot., 32, 459, 10.1071/SB19019
Egan, 2016, Parsing polyphyletic Pueraria: delimiting distinct evolutionary lineages through phylogeny, Mol. Phylogen. Evol., 104, 44, 10.1016/j.ympev.2016.08.001
Enright, 2002, An efficient algorithm for large-scale detection of protein families, Nucleic Acids Res, 30, 1575, 10.1093/nar/30.7.1575
Erwin, 2009, Climate as a driver of evolutionary change, Curr. Biol., 19, R575, 10.1016/j.cub.2009.05.047
FitzJohn, 2009, Estimating trait-dependent speciation and extinction rates from incompletely resolved phylogenies, Syst. Biol., 58, 595, 10.1093/sysbio/syp067
Freeling, 2006, Gene-balanced duplications, like tetraploidy, provide predictable drive to increase morphological complexity, Genome Res., 16, 805, 10.1101/gr.3681406
Fu, 2012, CD-HIT: accelerated for clustering the next-generation sequencing data, Bioinformatics, 28, 3150, 10.1093/bioinformatics/bts565
Garg, 2009, Symbiotic nitrogen fixation in legume nodules: process and signaling: a review, 519
Grabherr, 2011, Full-length transcriptome assembly from RNA-seq data without a reference genome, Nat. Biotechnol., 29, 644, 10.1038/nbt.1883
Gregg, 2017, Gene-tree reconciliation with MUL-trees to resolve polyploidy events, Syst. Biol., 66, 1007, 10.1093/sysbio/syx044
Griesmann, 2018, Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis, Science, 361, eaat1743, 10.1126/science.aat1743
Guo, 2020, Phylotranscriptomics in Cucurbitaceae reveal multiple whole-genome duplications and key morphological and molecular innovations, Mol. Plant, 13, 1, 10.1016/j.molp.2020.05.011
Handberg, 1992, Lotus japonicus, an autogamous, diploid legume species for classical and molecular genetics, Plant J., 2, 487, 10.1111/j.1365-313X.1992.00487.x
Hane, 2017, A comprehensive draft genome sequence for lupin (Lupinus angustifolius), an emerging health food: insights into plant-microbe interactions and legume evolution, Plant Biotechnol. J., 15, 318, 10.1111/pbi.12615
Herendeen, 2003, Phylogenetic relationships in caesalpinioid legumes: a preliminary analysis based on morphological and molecular data, 37
Hu, 2000, Phylogenetic systematics of the tribe Millettieae (Leguminosae) based on chloroplast trnK/matK sequences and its implications for evolutionary patterns in Papilionoideae, Am. J. Bot., 87, 418, 10.2307/2656638
Huang, 2016, Resolution of Brassicaceae phylogeny using nuclear genes uncovers nested radiations and supports convergent morphological evolution, Mol. Biol. Evol., 33, 394, 10.1093/molbev/msv226
Huang, 2016, Multiple polyploidization events across Asteraceae with two nested events in the early history revealed by nuclear phylogenomics, Mol. Biol. Evol., 33, 2820, 10.1093/molbev/msw157
Hughes, 2006, Island radiation on a continental scale: exceptional rates of plant diversification after uplift of the Andes, Proc. Natl. Acad. Sci. U S A, 103, 10334, 10.1073/pnas.0601928103
Jiao, 2012, A genome triplication associated with early diversification of the core eudicots, Genome Biol., 13, R3, 10.1186/gb-2012-13-1-r3
Jiao, 2014, Integrated syntenic and phylogenomic analyses reveal an ancient genome duplication in monocots, Plant Cell, 26, 2792, 10.1105/tpc.114.127597
Jiao, 2011, Ancestral polyploidy in seed plants and angiosperms, Nature, 473, 97, 10.1038/nature09916
Käss, 1996, Molecular evolution of the Leguminosae: phylogeny of the three subfamilies based on rbcL-sequences, Biochem. Syst. Ecol., 24, 365, 10.1016/0305-1978(96)00032-4
Kajita, 2001, rbcL and legume phylogeny, with particular reference to Phaseoleae, Millettieae, and allies, Syst. Bot., 26, 515
Katoh, 2013, MAFFT multiple sequence alignment software version 7: improvements in performance and usability, Mol. Biol. Evol., 30, 772, 10.1093/molbev/mst010
Knapp, 2005, Relaxed molecular clock provides evidence for long-distance dispersal of Nothofagus (southern beech), PLoS Biol., 3, 38, 10.1371/journal.pbio.0030014
Koenen, 2020, Hybrid capture of 964 nuclear genes resolves evolutionary relationships in the mimosoid legumes and reveals the polytomous origins of a large pantropical radiation, Am J Bot., 107, 1710, 10.1002/ajb2.1568
Koenen, 2020, Large-scale genomic sequence data resolve the deepest divergences in the legume phylogeny and support a near-simultaneous evolutionary origin of all six subfamilies, New Phytol., 225, 1355, 10.1111/nph.16290
Koenen, 2020, The origin of the legumes is a complex paleopolyploid phylogenomic tangle closely associated with the Cretaceous-Paleogene (K-Pg) mass extinction event, Syst. Biol.
Konishi, 2013, Arabidopsis NIN-like transcription factors have a central role in nitrate signalling, Nat. Commun., 4, 1617, 10.1038/ncomms2621
Kyalangalilwa, 2013, Phylogenetic position and revised classification of Acacia s.l. (Fabaceae: Mimosoideae) in Africa, including new combinations in Vachellia and Senegalia, Bot. J. Linn. Soc., 172, 500, 10.1111/boj.12047
Larsson, 2014, AliView: a fast and lightweight alignment viewer and editor for large datasets, Bioinformatics, 30, 3276, 10.1093/bioinformatics/btu531
Lavin, 2005, Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary, Syst. Biol., 54, 575, 10.1080/10635150590947131
Leebens-Mack, 2019, One thousand plant transcriptomes and the phylogenomics of green plants, Nature, 574, 679, 10.1038/s41586-019-1693-2
Lewis, 2005
Li, 2015, Large-scale phylogenetic analyses reveal multiple gains of actinorhizal nitrogen-fixing symbioses in angiosperms associated with climate change, Sci. Rep., 5, 14023, 10.1038/srep14023
Li, 2013, Comparative genomics suggests that an ancestral polyploidy event leads to enhanced root nodule symbiosis in the Papilionoideae, Mol. Biol. Evol., 30, 2602, 10.1093/molbev/mst152
Li, 2017, Single-copy genes as molecular markers for phylogenomic studies in seed plants, Genome Biol. Evol., 9, 1130, 10.1093/gbe/evx070
Limpens, 2003, LysM domain receptor kinases regulating rhizobial Nod factor-induced infection, Science, 302, 630, 10.1126/science.1090074
Lohaus, 2016, Of dups and dinos: evolution at the K/Pg boundary, Curr. Opin. Plant Biol., 30, 62, 10.1016/j.pbi.2016.01.006
LPWG, 2013, Towards a new classification system for legumes: progress report from the 6th International Legume Conference, S. Afr. J. Bot., 89, 3, 10.1016/j.sajb.2013.07.022
LPWG, 2017, A new subfamily classification of the Leguminosae based on a taxonomically comprehensive phylogeny, Taxon, 66, 44, 10.12705/661.3
Lu, 2018, Evolutionary history of the angiosperm flora of China, Nature, 554, 234, 10.1038/nature25485
Luckow, 2003, A phylogenetic analysis of the Mimosoideae (Leguminosae) based on chloroplast DNA sequence data, 197
Luo, 2012, SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler, GigaScience, 1, 18, 10.1186/2047-217X-1-18
Maddison
Maddison, 2007, Estimating a binary character's effect on speciation and extinction, Syst. Biol., 56, 701, 10.1080/10635150701607033
Mandel, 2019, A fully resolved backbone phylogeny reveals numerous dispersals and explosive diversifications throughout the history of Asteraceae, Proc. Natl. Acad. Sci. U S A, 116, 14083, 10.1073/pnas.1903871116
Manzanilla, 2012, Phylogeny reconstruction in the Caesalpinieae grade (Leguminosae) based on duplicated copies of the sucrose synthase gene and plastid markers, Mol. Phylogen. Evol., 65, 149, 10.1016/j.ympev.2012.05.035
Mason, 2015, Unreduced gametes: meiotic mishap or evolutionary mechanism?, Trends Genet., 31, 5, 10.1016/j.tig.2014.09.011
Murakami, 2018, Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus, ife, 7, e33506
Nguyen, 2015, IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies, Mol Biol Evol, 32, 268, 10.1093/molbev/msu300
Pertea, 2003, TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets, Bioinformatics, 19, 651, 10.1093/bioinformatics/btg034
Prenner, 2008, Towards unlocking the deep nodes of Leguminosae: floral development and morphology of the enigmatic Duparquetia orchidacea (Leguminosae, Caesalpinioideae), Am. J. Bot., 95, 1349, 10.3732/ajb.0800199
Qi, 2018, A well-resolved fern nuclear phylogeny reveals the evolution history of numerous transcription factor families, Mol. Phylogen. Evol., 127, 961, 10.1016/j.ympev.2018.06.043
Ren, 2018, Widespread whole genome duplications contribute to genome complexity and species diversity in angiosperms, Mol. Plant, 11, 414, 10.1016/j.molp.2018.01.002
Roy, 2020, Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation, Plant Cell, 32, 15, 10.1105/tpc.19.00279
Rutten, 2020, Duplication of symbiotic lysin motif receptors predates the evolution of nitrogen-fixing nodule symbiosis, Plant Physiol., 184, 1004, 10.1104/pp.19.01420
Sanderson, 2002, Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach, Mol. Biol. Evol., 19, 101, 10.1093/oxfordjournals.molbev.a003974
Schmutz, 2010, Genome sequence of the palaeopolyploid soybean, Nature, 463, 178, 10.1038/nature08670
Schmutz, 2014, A reference genome for common bean and genome-wide analysis of dual domestications, Nat. Genet., 46, 707, 10.1038/ng.3008
Shen, 2017, Large-scale phylogenomic analysis resolves a backbone phylogeny in ferns, GigaScience, 7, gix116
Silveira, 2016, Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority, Plant Soil, 403, 129, 10.1007/s11104-015-2637-8
Simão, 2015, BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs., Bioinformatics, 31, 3210, 10.1093/bioinformatics/btv351
Smith, 2012, treePL: divergence time estimation using penalized likelihood for large phylogenies, Bioinformatics, 28, 2689, 10.1093/bioinformatics/bts492
Soltis, 1995, Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms, Proc. Natl. Acad. Sci. U S A, 92, 2647, 10.1073/pnas.92.7.2647
Spehn, 2002, The role of legumes as a component of biodiversity in a cross-European study of grassland biomass nitrogen, Oikos, 98, 205, 10.1034/j.1600-0706.2002.980203.x
Sprent, 2009
Springer, 2001, Mitochondrial versus nuclear gene sequences in deep-level mammalian phylogeny reconstruction, Mol. Biol. Evol., 18, 132, 10.1093/oxfordjournals.molbev.a003787
Stai, 2019, Cercis: a non-polyploid genomic relic within the generally polyploid legume family, Front. Plant Sci., 10, 345, 10.3389/fpls.2019.00345
Stamatakis, 2014, RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies, Bioinformatics, 30, 1312, 10.1093/bioinformatics/btu033
Stefanović, 2009, Relationships among Phaseoloid legumes based on sequences from eight chloroplast regions, Syst. Bot., 34, 115, 10.1600/036364409787602221
Suyama, 2006, PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments, Nucleic Acids Res., 34, W609, 10.1093/nar/gkl315
Suzuki, 2013, The evolutionary events necessary for the emergence of symbiotic nitrogen fixation in legumes may involve a loss of nitrate responsiveness of the NIN transcription factor, Plant Signal. Behav., 8, e25975, 10.4161/psb.25975
Thomas, 2017, Gene-tree reconciliation with MUL-trees to resolve polyploidy events, Syst. Biol., 66, 1007, 10.1093/sysbio/syx044
Trenchard, 2008, A review of ploidy in the genus Prosopis (Leguminosae), Bot. J. Linn. Soc., 156, 425, 10.1111/j.1095-8339.2007.00712.x
van Velzen, 2019, A resurrected scenario: single gain and massive loss of nitrogen-fixing nodulation, Trends Plant Sci., 24, 49, 10.1016/j.tplants.2018.10.005
van Velzen, 2018, Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses, Proc. Natl. Acad. Sci. U S A, 115, E4700, 10.1073/pnas.1721395115
van Velzen, 2017, Parallel loss of symbiosis genes in relatives of nitrogen-fixing non-legume Parasponia, bioRxiv, 169706
Vandermeer, 1989
Vandermeer, 1990, Agroecology. Intercropping, 481
Vanneste, 2014, Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary, Genome Res., 24, 1334, 10.1101/gr.168997.113
Vatanparast, 2018, Targeting legume loci: a comparison of three methods for target enrichment bait design in Leguminosae phylogenomics, Appl. Plant Sci., 6, e1036, 10.1002/aps3.1036
Veizer, 2000, Evidence for decoupling of atmospheric CO2 and global climate during the Phanerozoic eon, Nature, 408, 698, 10.1038/35047044
Wang, 2010, KaKs_Calculator 2.0: a toolkit incorporating gamma-series methods and sliding window strategies, Genomics Proteomics Bioinformatics, 8, 77, 10.1016/S1672-0229(10)60008-3
Wang, 2012, MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity, Nucleic Acids Res, 40, 10.1093/nar/gkr1293
Wang, 2017, Hierarchically aligning 10 legume genomes establishes a family-level genomics platform, Plant Physiol., 174, 284, 10.1104/pp.16.01981
Wang, 2018, Plastid genome evolution in the early-diverging legume subfamily Cercidoideae (Fabaceae), Front. Plant Sci., 9, 138, 10.3389/fpls.2018.00138
Wen, 2015, Utility of transcriptome sequencing for phylogenetic inference and character evolution, 1
Werner, 2014, A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms, Nat. Commun., 5, 4087, 10.1038/ncomms5087
Wickett, 2014, Phylotranscriptomic analysis of the origin and early diversification of land plants, Proc. Natl. Acad. Sci. USA, 111, E4859, 10.1073/pnas.1323926111
Wojciechowski, 2003, Reconstructing the phylogeny of legumes (Leguminosae): an early 21st century perspective, 5
Wojciechowski, 2004, A phylogeny of legumes (Leguminosae) based on analysis of the plastid matK gene resolves many well-supported subclades within the family, Am. J. Bot., 91, 1846, 10.3732/ajb.91.11.1846
Xiang, 2017, Evolution of Rosaceae fruit types based on nuclear phylogeny in the context of geological times and genome duplication, Mol. Biol. Evol., 34, 262
Yang, 2018, Improved transcriptome sampling pinpoints 26 ancient and more recent polyploidy events in Caryophyllales, including two allopolyploidy events, New Phytol., 217, 855, 10.1111/nph.14812
Yang, 2006
Young, 2011, The Medicago genome provides insight into the evolution of rhizobial symbioses, Nature, 480, 520, 10.1038/nature10625
Zachos, 2008, An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics, Nature, 451, 279, 10.1038/nature06588
Zahran, 1999, Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate, Microbiol. Mol. Biol. Rev., 63, 968, 10.1128/MMBR.63.4.968-989.1999
Zeng, 2017, Resolution of deep eudicot phylogeny and their temporal diversification using nuclear genes from transcriptomic and genomic datasets, New Phytol., 214, 1338, 10.1111/nph.14503
Zeng, 2014, Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times, Nat. Commun., 5, 4956, 10.1038/ncomms5956
Zhang, 2018, ASTRAL-III: polynomial time species tree reconstruction from partially resolved gene trees, BMC Bioinformatics, 19, 153, 10.1186/s12859-018-2129-y
Zhang, 2015, Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm, BMC Genomics, 16, 217, 10.1186/s12864-015-1441-4
Zhang, 2009, Phylogeny of Caragana (Fabaceae) based on DNA sequence data from rbcL, trnS–trnG, and ITS, Mol. Phylogen. Evol., 50, 547, 10.1016/j.ympev.2008.12.001
Zhang, 2012, Highly conserved low-copy nuclear genes as effective markers for phylogenetic analyses in angiosperms, New Phytol., 195, 923, 10.1111/j.1469-8137.2012.04212.x
Zhang, 2020, The water lily genome and the early evolution of flowering plants, Nature, 577, 79, 10.1038/s41586-019-1852-5
Zhang, 2020, Exploration of plastid phylogenomic conflict yields new insights into the deep relationships of Leguminosae, Syst. Biol., 69, 613, 10.1093/sysbio/syaa013
Zhang, 2020, Asterid phylogenomics/phylotranscriptomics uncover morphological evolutionary histories and support phylogenetic placement for numerous whole-genome duplications, Mol. Biol. Evol., 69
Zhao, 2016, Phylogenomic analyses of large-scale nuclear genes provide new insights into the evolutionary relationships within the rosids, Mol. Phylogen. Evol., 105, 166, 10.1016/j.ympev.2016.06.007
Zhuang, 2019, The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication, Nat. Genet., 51, 865, 10.1038/s41588-019-0402-2
Zimmerman, 2017, Floral evolution and phylogeny of the Dialioideae, a diverse subfamily of tropical legumes, Am. J. Bot., 104, 1019, 10.3732/ajb.1600436