Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hình ảnh hạt nhân của các quy trình phân tử trong ung thư
Tóm tắt
Hình ảnh phân tử sử dụng đồng vị phóng xạ đã mở ra khả năng hình ảnh hóa một loạt các quy trình phân tử bằng cách sử dụng các chất đánh dấu phóng xạ được tiêm vào cơ thể với nồng độ rất thấp mà không làm ảnh hưởng đến các quy trình đang được nghiên cứu. Một số ví dụ bao gồm sự biểu hiện của thụ thể peptide cụ thể, tạo mạch, kháng thuốc đa chiều, thiếu oxy, chuyển hóa glucose, và nhiều quy trình khác. Bài viết này trình bày một cái nhìn tổng quan, nhằm vào đối tượng không chuyên về hình ảnh, về các công nghệ hình ảnh đồng vị phóng xạ như chụp cắt lớp phát positron và hình ảnh đồng vị phóng xạ photon đơn, và một số phân tử được gán nhãn bằng các đồng vị phóng xạ phát gamma và positron đã được phát triển, hoặc đang được phát triển, cho các ứng dụng nghiên cứu và lâm sàng trong điều trị ung thư.
Từ khóa
#hình ảnh hạt nhân #đồng vị phóng xạ #các quy trình phân tử #ung thư #chụp cắt lớp phát positron #hình ảnh đồng vị phóng xạ photon đơnTài liệu tham khảo
Riedel C, Dohan O, De la Vieja A, Ginter CS, Carrasco N (2001) Journey of the iodide transporter NIS: from its molecular identification to its clinical role in cancer. Trends Biochem Sci 26:490–496
Chung JK (2002) Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 43:1188–1200
Dubois P (2009) Historique de l’imagerie en médecine nucléaire: a history of scintography. IRBM 30:40–46. doi:10.1016/j.irbm.2008.12.002
Banerjee S, Pillai MR, Ramamoorthy N (2001) Evolution of Tc-99m in diagnostic radiopharmaceuticals. Semin Nucl Med 31:260–277
Phelps ME (2000) Inaugural article: positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA 97:9226–9233. doi:97/16/9226[pii]
Ter-Pogossian MM, Wagner HN (1998) A new look at the cyclotron for making short-lived isotopes. Semin Nucl Med 28:202–212
McQuade P, Rowland DJ, Lewis JS, Welch MJ (2005) Positron-emitting isotopes produced on biomedical cyclotrons. Curr Med Chem 12:807–818
Bedford M, Maisey MN (2004) Requirements for clinical PET: comparisons within Europe. Eur J Nucl Med Mol Imaging 31:208–221. doi:10.1007/s00259-003-1351-6
Lagrange JL, Maublant J, Darcourt J (1995) Bull Cancer (Paris) 82:611–622
Ganguly BN, Mondal NN, Nandy M, Roesch F (2009) Some physical aspects of positron annihilation tomography: a critical review. J Radioanal Nucl Chem 279:685–698. doi:10.1007/s10967-007-7256-2
Rahmim A, Zaidi H (2008) PET versus SPECT: strengths, limitations and challenges. Nucl Med Commun 29:193–207
Patton JA, Townsend DW, Hutton BF (2009) Hybrid imaging technology: from dreams and vision to clinical devices. Semin Nucl Med 39:247–263. doi:10.1053/j.semnuclmed.2009.03.005
Bowen ML, Orvig C (2008) 99m-technetium carbohydrate conjugates as potential agents in molecular imaging. Chem Commun 41:5077–5091
Desar IME, van Herpen CML, van Laarhoven HWM, Barentsz JO, Oyen WJG, van der Graaf WTA (2009) Beyond RECIST: molecular and functional imaging techniques for evaluation of response to targeted therapy. Cancer Treat Rev 35:309–321. doi:10.1016/j.ctrv.2008.12.001
Gatley SJ (2003) Labeled glucose analogs in the genomic era. J Nucl Med 44:1082–1086
Yang DJ, Kim CG, Schechter NR, Azhdarinia A, Yu DF, Oh CS, Bryant JL, Won JJ, Kim EE, Podoloff DA (2003) Imaging with 99mTc ECDG targeted at the multifunctional glucose transport system: feasibility study with rodents. Radiology 226:465–473
Chen Y, Wen Huang Z, He L, Long Zheng S, Lian Li J, Lian Qin D (2006) Synthesis and evaluation of a technetium-99m-labeled diethylenetriaminepentaacetate-deoxyglucose complex ([99mTc]-DTPA-DG) as a potential imaging modality for tumors. Appl Radiat Isot 64:342–347
Chen X, Li L, Liu F, Liu B (2006) Synthesis and biological evaluation of technetium-99m-labeled deoxyglucose derivatives as imaging agents for tumor. Bioorg Med Chem Lett 16:5503–5506
Brown JM (1999) The hypoxic cell: a target for selective cancer therapy—Eighteenth Bruce F. Cain Memorial Award Lecture. Cancer Res 59:5863–5870
Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giaccia AJ (1996) Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 379:88–91. doi:10.1038/379088a0
Hockel M, Schlenger K, Aral B, Mitze M, Schaffer U, Vaupel P (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515
Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845
Lewis JS, McCarthy DW, McCarthy TJ, Fujibayashi Y, Welch MJ (1999) Evaluation of 64Cu-ATSM in vitro and in vivo in a hypoxic tumor model. J Nucl Med 40:177–183
Lewis JS, Sharp TL, Laforest R, Fujibayashi Y, Welch MJ (2001) Tumor uptake of copper-diacetyl-bis(N4-methylthiosemicarbazone): effect of changes in tissue oxygenation. J Nucl Med 42:655–661
Obata A, Yoshimoto M, Kasamatsu S, Naiki H, Takamatsu S, Kashikura K, Furukawa T, Lewis JS, Welch MJ, Saji H, Yonekura Y, Fujibayashi Y (2003) Intra-tumoral distribution of 64Cu-ATSM: a comparison study with FDG. Nucl Med Biol 30:529–534. doi:10.1016/S0969-8051(03)00047-7
Yuan H, Schroeder T, Bowsher JE, Hedlund LW, Wong T, Dewhirst MW (2006) Intertumoral differences in hypoxia selectivity of the PET imaging agent 64Cu(II)-diacetyl-bis(N4-methylthiosemicarbazone). J Nucl Med 47:989–998
Dehdashti F, Grigsby PW, Mintun MA, Lewis JS, Siegel BA, Welch MJ (2003) Assessing tumour hypoxia in cervical cancer by positron emission tomography with 60Cu-ATSM: relationship to therapeutic response—a preliminary report. Int J Radiat Oncol Biol Phys 55:1233–1238. doi:10.1016/S0360-3016(02)04477-2
Dehdashti F, Mintun MA, Lewis JS, Bradley J, Govindan R, Laforest R, Welch MJ, Siegel BA (2003) In vivo assessment of tumor hypoxia in lung cancer with 60Cu-ATSM. Eur J Nucl Med Mol Imaging 30:844–850. doi:10.1007/s00259-003-1130-4
Laforest R, Dehdashti F, Lewis JS, Schwarz SW (2005) Dosimetry of 60/61/62/64Cu-ATSM: a hypoxia imaging agent for PET. Eur J Nucl Med Mol Imaging 32:764–770. doi:10.1007/s00259-004-1756-x
Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM, Obradovich JE, Muzik O, Mangner TJ (1998) Nat Med 4:1334–1336. doi:10.1038/3337
Shields AF, Lawhorn-Crews JM, Briston DA, Zalzala S, Gadgeel S, Douglas KA, Mangner TJ, Heilbrun LK, Muzik O (2008) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Clin Cancer Res 14:4463–4468. doi:10.1158/1078-0432.ccr-07-5243
Jager PL, de Korte MA, Lub-de Hooge MN, van Waarde A, Koopmans KP, Perik PJ, de Vries EG (2005) Molecular imaging: what can be used today. Cancer Imaging 5:S27–S32. doi:10.1102/1470-7330.2005.0023
Bading JR, Shields AF (2008) Imaging of cell proliferation: status and prospects. J Nucl Med 49(Suppl 2):64S–80S. doi:10.2967/jnumed.107.046391
Larson SM, Schoder H (2009) Q J Nucl Med Mol Imaging 53:158–166
Buck AK, Herrmann K, Shen C, Dechow T, Schwaiger M, Wester HJ (2009) Molecular imaging of proliferation in vivo: positron emission tomography with [(18)F]fluorothymidine. Methods 48:205–215. doi:10.1016/j.ymeth.2009.03.009
Tian J, Yang X, Yu L, Chen P, Xin J, Ma L, Feng H, Tan Y, Zhao Z, Wu W (2008) A multicenter clinical trial on the diagnostic value of dual-tracer PET/CT in pulmonary lesions using 3′-deoxy-3′-18F-fluorothymidine and 18F-FDG. J Nucl Med 49:186–194. doi:10.2967/jnumed.107.044966
Ishiwata K, Vaalburg W, Elsinga PH, Paans AM, Woldring MG (1988) Comparison of L-[1–11C]methionine and L-methyl-[11C]methionine for measuring in vivo protein synthesis rates with PET. J Nucl Med 29:1419–1427
Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J (2008) 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imag Biol 10:1–18. doi:10.1007/s11307-007-0115-2
Lindholm P, Lapela M, Nagren K, Lehikoinen P, Minn H, Jyrkkio S (2009) Preliminary study of carbon-11 methionine PET in the evaluation of early response to therapy in advanced breast cancer. Nucl Med Common 30:30–36
Vallabhajosula S (2007) 18F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization. Sem Nucl Med 37:400–419. doi:10.1053/j.semnuclmed.2007.08.004
Takeo U, Koichi S, Tomohiro A, Dai F, Hideo T, Naoto O (2009) Evaluation of O-[18F]fluoromethyl-d-tyrosine as a radiotracer for tumor imaging with positron emission tomography. Nucl Med Biol 36:295–303
Wester HJ, Herz M, Weber W, Heiss P, Senekowitsch-Schmidtke R, Schwaiger M, Stocklin G (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-L-Tyrosine for tumor imaging. J Nucl Med 40:205–212
Stockhammer F, Plotkin M, Amthauer H, van Landeghem FK, Woiciechowsky C (2008) Correlation of F-18-fluoro-ethyl-tyrosin uptake with vascular and cell density in non-contrast-enhancing gliomas. J Neuro-Oncol 88:205–210. doi:10.1007/s11060-008-9551-3
Wyss M, Hofer S, Bruehlmeier M, Hefti M, Uhlmann C, Bartschi E, Buettner UW, Roelcke U (2009) Early metabolic responses in temozolomide treated low-grade glioma patients. J Neuro-Oncol. doi:10.1007/s11060-009-9896-2
Groves AM, Win T, Haim SB, Ell PJ (2007) Non-[18F]FDG PET in clinical oncology. Lancet Oncol 8:822–830. doi:10.1016/S1470-2045(07)70274-7
Boersma HH, Kietselaer BLJH, Stolk LML, Bennaghmouch A, Hofstra L, Narula J, Heidendal GAK, Reutelingsperger CPM (2005) Past, present, and future of annexin A5: from protein discovery to clinical applications. J Nucl Med 46:2035–2050
Blankenberg FG (2008) Monitoring of treatment-induced apoptosis in oncology with PET and SPECT. Curr Pharm Des 14:2974–2982
Tait JF, Smith C, Blankenberg FG (2005) Structural requirements for in vivo detection of cell death with 99mTc-annexin V. J Nucl Med 46:807–815
Ohtsuki K, Akashi K, Aoka Y, Blankenberg FG, Kopiwoda S, Tait JF, Strauss HW (1999) Technetium-99m HYNIC-annexin V: a potential radiopharmaceutical for the in-vivo detection of apoptosis. Eur J Nucl Med 26:1251–1258
Blankenberg FG, Vanderheyden JL, Strauss HW, Tait JF (2006) Radiolabeling of HYNIC–annexin V with technetium-99m for in vivo imaging of apoptosis. Nat Protoc 1:108–110. doi:10.1038/nprot2006.17
Zhang X, Rizo J, Sudhof TC (1998) Mechanism of phospholipid binding by the C2A-domain of synaptotagmin I. Biochemistry 37:12395–12403
Zhao M, Zhu X, Ji S, Zhou J, Ozker KS, Fang W, Molthen RC, Hellman RS (2006) 99mTc-labeled C2A domain of synaptotagmin I as a target-specific molecular probe for noninvasive imaging of acute myocardial infarction. J Nucl Med 47:1367–1374
Hirt UA, Leist M (2003) Rapid, noninflammatory and PS-dependent phagocytic clearance of necrotic cells. Cell Death Differ 10:1156–1164
Jin H, Varner J (2004) Integrins: roles in cancer development and as treatment targets. Br J Cancer 90:561–565
Schottelius M, Laufer B, Kessler H, H-Jr W (2009) Ligands for mapping αvβ3-integrin expression in vivo. Acc Chem Res 42:969–980. doi:10.1021/ar800243b
Liu S, Edwards DS, Ziegler MC, Harris AR, Hemingway SJ, Barrett JA (2001) 99mTc-labeling of hydrazinonicotiniamide-conjugated vitronection receptor antagonist useful for imaging tumors. Bioconjugate Chem 12:624–629
Liu S, Hsieh WY, Kim YS, Mohammed SI (2005) Effect of coligands on biodistribution characteristics of ternary ligand 99mTc complexes of a HYNIC-conjugated cyclic RGDfK dimer. Bioconjugate Chem 16:1580–1588. doi:10.1021/Bc0501653
Jia B, Shi JY, Yang Z, Xu B, Liu ZF, Zhao HY, Liu S, Wang F (2006) Tc-99m-labeled cyclic RGDfK dimer: initial evaluation for SPECT imaging of glioma integrin alpha(v)beta(3) expression. Bioconjugate Chem 17:1069–1076. doi:10.1021/Bc060055b
Chen XY, Liu S, Hou YP, Tohme M, Park R, Bading JR, Conti PS (2004) MicroPET imaging of breast cancer αv-integrin expression with 64Cu-labeled dimeric RGD peptides. Mol Imag Biol 6:350–359. doi:10.1016/j.mibio.2004.06.004
Wu Y, Zhang XZ, Xiong ZM, Cheng Z, Fisher DR, Liu S, Gambhir SS, Chen XY (2005) MicroPET imaging of glioma integrin αvβ3 expression using 64Cu-labeled tetrameric RGD peptide. J Nucl Med 46:1707–1718
Janssen M, Oyen WJG, Massuger LFAG, Frielink C, Dijkgraaf I, Edwards DS, Radjopadhye M, Corstens FHM, Boerman OC (2002) Comparison of a monomeric and dimeric radiolabeled RGD-peptide for tumor targeting. Cancer Biother Radiopharm 17:641–646
Janssen ML, Oyen WJ, Dijkgraaf I, Massuger LF, Frielink C, Edwards DS, Rajopadhye M, Boonstra H, Corstens FH, Boerman OC (2002) Turmor targeting with radiolabeled alpha-v-beta-3 integrin binding peptides in a nude mouse model. Cancer Res 62:6146–6151
Thumshirn G, Hersel U, Goodman SL, Kessler H (2003) Multimeric cyclic RGD peptides as potential tools for tumor targeting: solid-phase peptide synthesis and chemoselective oxime ligation. Chem Eur J 9:2717–2725. doi:10.1002/chem.200204304
Chen XY, Hou YP, Tohme M, Park R, Khankaldyyan V, Gonzales-Gomez I, Bading JR, Laug WE, Conti PS (2004) Pegylated Arg-Gly-Asp peptide: 64Cu labeling and PET imaging of brain tumor αvβ3-integrin expression. J Nucl Med 45:1776–1783
Dijkgraaf I, Kruijtzer J, Liu S, Soede A, Oyen W, Corstens F, Liskamp R, Boerman O (2007) Improved targeting of the αvβ3 integrin by multimerisation of RGD peptides. Eur J Nucl Med Mol Imaging 34:267–273
Beer A, Schwaiger M (2008) Imaging of integrin αvβ3 expression. Cancer Metastasis Rev 27:631–644
Schnell O, Krebs B, Carlsen J, Miederer I, Goetz C, Goldbrunner RH, Wester HJ, Haubner R, Popperl G, Holtmannspotter M, Kretzschmar HA, Kessler H, Tonn JC, Schwaiger M, Beer AJ (2009) Imaging of integrin αvβ3 αvβ3 expression in patients with malignant glioma by [18F]galacto-RGD positron emission tomography. Neuro Oncol. doi:10.1215/15228517-2009-024
Kenny LM, Coombes RC, Oulie I, Contractor KB, Miller M, Spinks TJ, McParland B, Cohen PS, Hui AM, Palmieri C, Osman S, Glaser M, Turton D, Al-Nahhas A, Aboagye EO (2008) Phase I trial of the positron-emitting Arg-Gly-Asp (RGD) peptide radioligand 18F-AH111585 in breast cancer patients. J Nucl Med 49:879–886. doi:10.2967/jnumed.107.049452
Glaser M, Solbakken M, Turton D, Pettitt R, Barnett J, Arukwe J, Karlsen H, Cuthbertson A, Luthra S, Årstad E (2008) Methods for (18)F-labeling of RGD peptides: comparison of aminooxy [(18)F]fluorobenzaldehyde condensation with ‘click labeling’ using 2-[(18)F]fluoroethylazide, and S-alkylation with [ (18)F]fluoropropanethiol. Amino Acids, Nov. 15. doi:10.1007/s00726-008-0200-0
Gottesman MM (1993) How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res 53:747–754
Tan B, Piwnica-Worms D, Ratner L (2000) Multidrug resistance transporters and modulation. Curr Opin Oncol 12:450–458
Cole SPC, Bhardwaj G, Gerlach JH, Mackie JE, Grant CE, Almquist KC, Stewart AJ, Kurz EU, Duncan AMV, Deeley RG (1992) Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line. Science 258:1650–1654
Ballinger JR (2001) Imaging multidrug resistance with radiolabeled substrates for P-glycoprotein and multidrug resistance protein. Cancer Biother Radiopharm 16:1–7
DelVecchio S, Ciarmiello A, Pace L, Potena MI, Carriero MV, Mainolfi C, Thomas R, DAiuto G, Tsuruo T, Salvatore M (1997) Fractional retention of technetium-99m-sestamibi as an index of P-glycoprotein expression in untreated breast cancer patients. J Nucl Med 38:1348–1351
Sikic BI, Fisher GA, Lum BL, Halsey J, BeketicOreskovic L, Chen G (1997) Modulation and prevention of multidrug resistance by inhibitors of P-glycoprotein. Cancer Chemother Pharm 40:S13–S19
Aloj L, Del Vecchio S, Damiano M, Zannetti A, Di Gennaro F, Imbriaco M, Salvatore M (1999) Fractional retention of 99mTc-MIBI and proliferation in untreated breast cancer. Eur J Nucl Med 26:1166–1166
Lubberink M, Luurtsema G, van Berckel BN, Boellaard R, Toornvliet R, Windhorst AD, Franssen EJ, Lammertsma AA (2007) Evaluation of tracer kinetic models for quantification of P-glycoprotein function using (R)-[11C]verapamil and PET. J Cereb Blood Flow Metab 27:424–433. doi:10.1038/sj.jcbfm.9600349
Luurtsema G, Molthoff CF, Windhorst AD, Smit JW, Keizer H, Boellaard R, Lammertsma AA, Franssen EJ (2003) (R)- and (S)-[11C]verapamil as PET-tracers for measuring P-glycoprotein function: in vitro and in vivo evaluation. Nucl Med Biol 30:747–751. doi:S0969805103000787[pii]
Hendrikse NH, de Vries EG, Franssen EJ, Vaalburg W, van der Graaf WT (2001) In vivo measurement of [11C]verapamil kinetics in human tissues. Eur J Clin Pharm 56:827–829
Fleish H (1995) Bisphosphonates in bone disease: from the laboratory to the patient. Parthenon Publishing Group, London
Handeland Å, Lindegaard MW, Heggli D-E (1989) Biodistribution of anionic separated MDP complexes from different MDP preparations. Eur J Nucl Med Mol Imaging 15:609–611
Cook GJ, Fogelman I (2001) Detection of bone metastases in cancer patients by 18F-fluoride and 18F-fluorodeoxyglucose positron emission tomography. Q J Nucl Med 45:47–52
Beheshti M, Vali R, Waldenberger P, Fitz F, Nader M, Loidl W, Broinger G, Stoiber F, Foglman I, Langsteger W (2008) Detection of bone metastases in patients with prostate cancer by 18F fluorocholine and 18F fluoride PET–CT: a comparative study. Eur J Nucl Med Mol Imaging 35:1766–1774. doi:10.1007/s00259-008-0788-z
Giersing BK, Rae MT, CarballidoBrea M, Williamson RA, Blower PJ (2001) In-111-DTPA-N-TIMP-2: a radiopharmaceutical for imaging matrix metalloproteinase expression in tumors. Bioconjugate Chem 12:964–971. doi:bc010028f[pii]
Schafers M, Riemann B, Kopka K, Breyholz H-J, Wagner S, Schafers KP, Law MP, Schober O, Levkau B (2004) Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall. Circulation 109:2554–2559. doi:10.1161/01.cir.0000129088.49276.83
Buscombe J, Hirji H, Witney-Smith C (2008) Nuclear medicine in the management of thyroid disease. Expert Rev Anticancer Ther 8:1425–1431. doi:10.1586/14737140.8.9.1425
Freudenberg LS, Jentzen W, Muller SP, Bockisch A (2008) Disseminated iodine-avid lung metastases in differentiated thyroid cancer: a challenge to 124I PET. Eur J Nucl Med Mol Imaging 35:502–508. doi:10.1007/s00259-007-0601-4
Dadachova E, Bouzahzah B, Zuckier LS, Pestell RG (2002) Rhenium-188 as an alternative to iodine-131 for treatment of breast tumors expressing the sodium/iodide symporter (NIS). Nucl Med Biol 29:13–18
Zuckier LS, Dohan O, Li Y, Chang CJ, Carrasco N, Dadachova E (2004) Kinetics of perrhenate uptake and comparative biodistribution of perrhenate, pertechnetate, and iodide by NaI symporter–expressing tissues in vivo. J Nucl Med 45:500–507
Brown I, Carpenter RN (1991) Endogenous 211At a-particle radiotherapy for undifferentiated thyroid cancer. Acta Radiol 376(suppl.):174–175
Zalutsky MR, Vaidyanathan GV (2000) Astatine-211-labeled radiotherapeutics: an emerging approach to targeted alpha-particle radiotherpay. Curr Pharmaceutical Des 6:1433–1455
Boubaker A, Delaloye AB (2008) MIBG scintigraphy for the diagnosis and follow-up of children with neuroblastoma. Q J Nucl Med Mol Imaging 52:388–402
DuBois SG, Matthay KK (2008) Radiolabeled metaiodobenzylguanidine for the treatment of neuroblastoma. Nucl Med Biol 35:S35–S48. doi:10.1016/j.nucmedbio.2008.05.002
Vaidyanathan G (2008) Meta-iodobenzylguanidine and analogues: chemistry and biology. Q J Nucl Med Mol Imaging 52:351–368
Apolo AB, Pandit-Taskar N, Morris MJ (2008) Novel tracers and their development for the imaging of metastatic prostate cancer. J Nucl Med 49:2031–2041. doi:10.2967/jnumed.108.050658
Hara T, Kosaka N, Kishi H (1998) PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 39:990–995
Reske SN, Blumstein NM, Neumaier B, Gottfried HW, Finsterbusch F, Kocot D, Moller P, Glatting G, Perner S (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47:1249–1254. doi:47/8/1249[pii]
Scher B, Seitz M, Albinger W, Tiling R, Scherr M, Becker HC, Souvatzogluou M, Gildehaus FJ, Wester HJ, Dresel S (2007) Value of 11C-choline PET and PET/CT in patients with suspected prostate cancer. Eur J Nucl Med Mol Imag 34:45–53. doi:10.1007/s00259-006-0190-7
Tuncel M, Souvatzoglou M, Herrmann K, Stollfuss J, Schuster T, Weirich G, Wester HJ, Schwaiger M, Krause BJ (2008) [11C]Choline positron emission tomography/computed tomography for staging and restaging of patients with advanced prostate cancer. Nucl Med Biol 35:689–695. doi:10.1016/j.nucmedbio.2008.05.006
Langsteger W, Heinisch M, Fogelman I (2006) The role of fluorodeoxyglucose, 18F-dihydroxyphenylalanine, 18F-choline, and 18F-fluoride in bone imaging with emphasis on prostate and breast. Sem Nucl Med 36:7392. doi:10.1053/j.semnuclmed.2005.09.002
Picchio M, Crivellaro C, Giovacchini G, Gianolli L, Messa C (2009) PET-CT for treatment planning in prostate cancer. Q J Nucl Med Mol Imaging 53:245–268
Signore A, Annovazzi A, Chianelli M, Corsetti F, Van de Wiele C, Watherhouse RN, Scopinaro F (2001) Peptide radiopharmaceuticals for diagnosis and therapy. Eur J Nucl Med 28:1555–1565
Lucignani G (2008) Labeling peptides with PET radiometals: Vulcan’s forge. Eur J Nucl Med Mol Imaging 35:209–215
Fichna J, Janecka A (2003) Synthesis of target-specific radiolabeled peptides for diagnostic imaging. Bioconjug Chem 14:3–17
De Leon-Rodriguez LM, Kovacs Z (2008) The synthesis and chelation chemistry of DOTA-peptide conjugates. Bioconjug Chem 19:391–402
Win Z, Al-Nahhas A, Rubello D, Gross MD (2007) Somatostatin receptor PET imaging with Gallium-68 labeled peptides. Q J Nucl Med Mol Imaging 51:244–250
Hoyer D, Bell GI, Berelowitz M, Epelbaum J, Feniuk W, Humphrey PPA, Ocarroll AM, Patel YC, Schonbrunn A, Taylor JE, Reisine T (1995) Classification and nomenclature of somatostatin receptors. Trends Pharmacol Sci 16:86–88
Schally AV (1988) Oncological applications of somatostatin analogs. Cancer Res 48:6977–6985
Bauer W, Briner U, Doepfner W, Haller R, Huguenin R, Marbach P, Petcher TJ, Pless J (1982) SMS 201–995: a very potent and selective octapeptide analogue of somatostatin with prolonged action. Life Sci 31:1133–1140
Decristoforo C, Melendez-Alafort L, Sosabowski JK, Mather SJ (2000) 99mTc-HYNIC-[Tyr3]-octreotide for imaging somatostatin-receptor-positive tumors: preclinical evaluation and comparison with 111In-octreotide. J Nucl Med 41:1114–1119
Bangard M, Béhé M, Guhlke S, Otte R, Bender H, Maecke HR, Biersack HJ (2000) Detection of somatostatin receptor-positive tumours using the new 99mTc-tricine-HYNIC-d -Phe1-Tyr3-octreotide: first results in patients and comparison with 111In-DTPA-d -Phe1-octreotide. Eur J Nucl Med Mol Imaging 27:628–637
AL-Nahhas A, Win Z, Szyszko T, Singh A, Khan S, Rubello D (2007) What can gallium-68 PET add to receptor and molecular imaging? Eur J Nucl Med Mol Imaging 34:1897–1901
Antunes P, Ginj M, Zhang H, Waser B, Baum RP, Reubi JC, Maecke H (2007) Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur J Nucl Med Mol Imaging 34:982–993
Hofmann M, Maecke H, Borner AR, Weckesser E, Schoffski P, Oei ML, Schumacher J, Henze M, Heppeler A, Meyer GJ, Knapp WH (2001) Biokinetics and imaging with the somatostatin receptor PET radioligand Ga-68-DOTATOC: preliminary data. Eur J Nucl Med 28:1751–1757
Gabriel M, Decristoforo C, Kendler D, Dobrozemsky G, Heute D, Uprimny C, Kovacs P, Von Guggenberg E, Bale R, Virgolini IJ (2007) Ga-68-DOTA-Tyr(3)-octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518
Reubi JC, Laderach U, Waser B, Gebbers JO, Robberecht P, Laissue JA (2000) Vasoactive intestinal peptide/pituitary adenylate cyclase-activating peptide receptor subtypes in human tumors and their tissues of origin. Cancer Res 60:3105–3112
Thakur ML, Aruva MR, Gariepy J, Acton P, Rattan S, Prasad S, Wickstrom E, Alavi A (2004) PET imaging of oncogene overexpression using Cu-64-vasoactive intestinal peptide (VIP) analog: comparison with Tc-99m-VIP analog. J Nucl Med 45:1381–1389
Zhang K, Aruva MR, Shanthly N, Cardi CA, Rattan S, Patel C, Kim C, McCue PA, Wickstrom E, Thakur ML (2008) PET imaging of VPAC1 expression in experimental and spontaneous prostate cancer. J Nucl Med 49:112–121
Smith JP, Solomon TE (1988) Effects of gastrin, proglumide, and somatostatin on growth of human-colon cancer. Gastroenterology 95:1541–1548
Rehfeld JF, Vansolinge WW (1994) The tumor biology of gastrin and cholecystokinin. Adv Cancer Res 63:295–347
Camby I, Salmon I, Oiry C, Galleyrand JC, Nagy N, Danguy A, Brotchi J, Pasteels JL, Martinez J, Kiss R (1996) The influence of gastrin and/or cholecystokinin antagonists on the proliferation of three human astrocytic tumor cell lines. Neuropeptides 30:433–437
Dockray GJ (2000) Gastrin, growth, and colon neoplasia. Gut 47:747–748
Wank SA, Pisegna JR, Deweerth A (1992) Brain and gastrointestinal cholecystokinin receptor family—structure and functional expression. Proc Nat Acad Sci USA 89:8691–8695
Kopin AS, Lee YM, Mcbride EW, Miller LJ, Lu M, Lin HY, Kolakowski LF, Beinborn M (1992) Expression cloning and characterization of the canine parietal-cell gastrin receptor. Proc Nat Acad Sci USA 89:3605–3609
Reubi JC, Waser B, Schaer JC, Laederach U, Erion J, Srinivasan A, Schmidt MA, Bugaj JE (1998) Unsulfated DTPA- and DOTA-CCK analogs as specific high-affinity ligands for CCK-B receptor-expressing human and rat tissues in vitro and in vivo. Eur J Nucl Med 25:481–490
Reubi JC, Schaer JC, Waser B (1997) Cholecystokinin (CCK)-A and CCK-B gastrin receptors in human tumors. Cancer Res 57:1377–1386
Behr TM, Jenner N, Behe M, Angerstein C, Gratz S, Raue F, Becker W (1999) Radiolabeled peptides for targeting cholecystokinin-B/gastrin receptor-expressing tumors. J Nucl Med 40:1029–1044
Alexander RW, Upp JR, Poston GJ, Gupta V, Townsend CM, Thompson JC (1988) Effects of bombesin on growth of human small cell lung-carcinoma in vivo. Cancer Res 48:1439–1441
Nelson J, Donnelly M, Walker B, Gray J, Shaw C, Murphy RF (1991) Bombesin stimulates proliferation of human breast-cancer cells in culture. Brit J Cancer 63:933–936
Wang QMJ, Knezetic JA, Schally AV, Pour PM, Adrian TE (1996) Bombesin may stimulate proliferation of human pancreatic cancer cells through an autocrine pathway. Int J Cancer 68:528–534
Moody T, Pert C, Gazdar A, Carney D, Minna J (1981) High levels of intracellular bombesin characterize human small-cell lung carcinoma. Science 214:1246–1248
Spindel ER, Giladi E, Brehm P, Goodman RH, Segerson TP (1990) Cloning and functional characterization of a complementary DNA encoding the murine fibroblast bombesin/gastrin-releasing peptide receptor. Mol Endocrinol 4:1956–1963
Wada E, Way J, Shapira H, Kusano K, Lebacq-Verheyden AM, Coy D, Jensen R, Battey J (1991) cDNA cloning, characterization, and brain region-specific expression of a neuromedin-B-preferring bombesin receptor. Neuron 6:421–430
Fathi Z, Corjay M, Shapira H, Wada E, Benya R, Jensen R, Viallet J, Sausville E, Battey J (1993) BRS-3: a novel bombesin receptor subtype selectively expressed in testis and lung carcinoma cells. J Biol Chem 268:5979–5984
Nagalla SR, Barry BJ, Creswick KC, Eden P, Taylor JT, Spindel ER (1995) Cloning of a receptor for amphibian [Phe13]bombesin distinct from the receptor for gastrin-releasing peptide: identification of a fourth bombesin receptor subtype (BB4). Proc Nat Acad Sci USA 92:6205–6209
Baidoo KE, Lin K-S, Zhan Y, Finley P, Scheffel U, Wagner HN (1998) Design, synthesis, and initial evaluation of high-affinity technetium bombesin analogues. Bioconjugate Chem 9:218–225
Breeman WAP, MDJ BF, Bernard DJ, Kwekkeboom AS, van der Pluijm ME, Hofland LJ, Visser TJ, Krenning EP (1999) Pre-clinical evaluation of bombesin, a new radioligand for bombesin-receptor scintigraphy. Int J Cancer 83:657–663
Nock B, Nikolopoulou A, Chiotellis E, Loudos G, Maintas D, Reubi J, Maina T (2003) [99mTc]Demobesin 1, a novel potent bombesin analogue for GRP receptor-targeted tumour imaging. Eur J Nucl Med Mol Imaging 30:247–258
Van de Wiele C, Dumont F, Dierckx RA, Peers SH, Thornback JR, Slegers G, Thierens H (2001) Biodistribution and dosimetry of 99mTc-RP527, a gastrin-releasing peptide (GRP) agonist for the visualization of GRP receptor-expressing malignancies. J Nucl Med 42:1722–1727
Van de Wiele C, Dumont F, Vanden Broecke R, Oosterlinck W, Cocquyt V, Serreyn R, Peers S, Thornback J, Slegers G, Dierckx RA (2000) Technetium-99m RP527, a GRP analogue for visualisation of GRP receptor-expressing malignancies: a feasibility study. European J Nucl Med Mol Imaging 27:1694–1699
Gotthardt M, van Eerd-Vismale J, Oyen WJG, de Jong M, Zhang H, Rolleman E, Maecke HR, Behe M, Boerman O (2007) Indication for different mechanisms of kidney uptake of radiolabeled peptides. J Nucl Med 48:596–601
Lamb HM, Faulds D (1998) Capromab pendetide—a review of its use as an imaging agent in prostate cancer. Drugs Aging 12:293–304
Goldenberg DM, Deland FH (1984) Clinical studies of prostatic cancer imaging with radiolabeled antibodies against prostatic acid-phosphatase. Urol Clin North Am 11:277–281
Peters DH, Fitton A (1995) Satumomab pendetide—a preliminary review of its use in the diagnosis of colorectal and ovarian cancer. Clin Immunother 3:395–408
Wegener WA, Petrelli N, Serafini A, Goldenberg DM (2000) Safety and efficacy of arcitumomab imaging in colorectal cancer after repeated administration. J Nucl Med 41:1016–1020
Breitz HB, Tyler A, Bjorn MJ, Lesley T, Weiden PL (1997) Clinical experience with Tc-99m nofetumomab merpentan (Verluma) radioimmunoscintigraphy. Clin Nucl Med 22:615–620
Goldenberg DM, Sharkey RM (2007) Novel radiolabeled antibody conjugates. Oncogene 26:3734–3744
Dearling JL, Pedley RB (2007) Technological advances in radioimmunotherapy. Clin Oncol (Royal College of Radiologists) 19:457–469
Denoyer D, Perek N, Jeune N, Frere D, Dubois F (2004) Evidence that 99mTc-(V)-DMSA uptake is mediated by NaPi cotransporter type III in tumour cell lines. Eur J Nucl Med Mol Imaging 31:77–84
Blower PJ, Singh J, Clarke SEM (1991) The chemical identity of pentavalent technetium-99m-dimercaptosuccinic acid. J Nucl Med 32:845–849
Blower PJ, Lam AS, O’Doherty MJ, Kettle AG, Coakley AJ, Knapp FF Jr (1998) Pentavalent rhenium-188 dimercaptosuccinic acid for targeted radiotherapy: synthesis and preliminary animal and human studies. Eur J Nucl Med 25:613–621
