Nuclear Mechanopathology and Cancer Diagnosis

Trends in Cancer - Tập 4 - Trang 320-331 - 2018
Caroline Uhler1, G.V. Shivashankar2,3
1Department of Electrical Engineering & Computer Science, Institute for Data, Systems & Society, MIT, Cambridge, MA, USA
2Mechanobiology Institute, National University of Singapore, Singapore
3FIRC Institute of Molecular Oncology (IFOM), Milan, Italy

Tài liệu tham khảo

Geiger, 2009, Environmental sensing through focal adhesions, Nat. Rev. Mol. Cell Biol., 10, 21, 10.1038/nrm2593 Discher, 2017, Matrix mechanosensing: from scaling concepts in ’omics data to mechanisms in the nucleus, regeneration, and cancer, Annu. Rev. Biophys., 46, 295, 10.1146/annurev-biophys-062215-011206 Heller, 2015, Tissue patterning and cellular mechanics, J. Cell Biol., 211, 219, 10.1083/jcb.201506106 Shivashankar, 2011, Mechanosignaling to the cell nucleus and gene regulation, Annu. Rev. Biophys., 40, 361, 10.1146/annurev-biophys-042910-155319 Wang, 2009, Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus, Nat. Rev. Mol. Cell Biol., 10, 75, 10.1038/nrm2594 Cho, 2017, Mechanosensing by the nucleus: From pathways to scaling relationships, J. Cell Biol., 216, 305, 10.1083/jcb.201610042 Kadrmas, 2004, The LIM domain: from the cytoskeleton to the nucleus, Nat. Rev. Mol. Cell Biol., 5, 920, 10.1038/nrm1499 Fedorchak, 2014, Cellular mechanosensing: getting to the nucleus of it all, Prog. Biophys. Mol. Biol., 115, 76, 10.1016/j.pbiomolbio.2014.06.009 Humphrey, 2014, Mechanotransduction and extracellular matrix homeostasis, Nat. Rev. Mol. Cell Biol., 15, 802, 10.1038/nrm3896 Iskratsch, 2014, Appreciating force and shape—the rise of mechanotransduction in cell biology, Nat. Rev. Mol. Cell Biol., 15, 825, 10.1038/nrm3903 Sun, 2016, Integrin-mediated mechanotransduction, J. Cell Biol., 215, 445, 10.1083/jcb.201609037 Stewart, 2015, Nuclear–cytoskeletal linkages facilitate cross talk between the nucleus and intercellular adhesions, J. Cell Biol., 209, 403, 10.1083/jcb.201502024 Keeling, 2017, Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization, Sci. Rep., 7, 5219, 10.1038/s41598-017-05467-x Sero, 2015, Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells, Mol. Syst. Biol., 11, 0790, 10.15252/msb.20145644 Luca, 2017, Notch–Jagged complex structure implicates a catch bond in tuning ligand sensitivity, Science, 355, 1320, 10.1126/science.aaf9739 Speight, 2016, Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3, Nat. Commun., 7, 11642, 10.1038/ncomms11642 Starr, 2010, Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges, Annu. Rev. Cell Dev. Biol., 26, 421, 10.1146/annurev-cellbio-100109-104037 Crisp, 2006, Coupling of the nucleus and cytoplasm: role of the LINC complex, J. Cell Biol., 172, 41, 10.1083/jcb.200509124 Jain, 2013, Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility, Proc. Natl. Acad. Sci. U. S. A., 110, 11349, 10.1073/pnas.1300801110 Lammerding, 2005, Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells, J. Cell Biol., 170, 781, 10.1083/jcb.200502148 Zhang, 2007, Nesprin-1 and -2 are involved in the pathogenesis of Emery–Dreifuss muscular dystrophy and are critical for nuclear envelope integrity, Hum. Mol. Genet., 16, 2816, 10.1093/hmg/ddm238 Zink, 2004, Nuclear structure in cancer cells, Nat. Rev. Cancer, 4, 677, 10.1038/nrc1430 Mazumder, 2007, Gold-nanoparticle-assisted laser perturbation of chromatin assembly reveals unusual aspects of nuclear architecture within living cells, Biophys. J., 93, 2209, 10.1529/biophysj.106.102202 Allis, 2016, The molecular hallmarks of epigenetic control, Nat. Rev. Genet., 17, 487, 10.1038/nrg.2016.59 Bustin, 2016, Nongenetic functions of the genome, Science, 352, 10.1126/science.aad6933 Gonzalez-Sandoval, 2016, On TADs and LADs: spatial control over gene expression, Trends Genet., 32, 485, 10.1016/j.tig.2016.05.004 Rao, 2014, A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping, Cell, 159, 1665, 10.1016/j.cell.2014.11.021 Lieberman-Aiden, 2009, Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289, 10.1126/science.1181369 Mazumder, 2008, Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus, Biophys. J., 95, 3028, 10.1529/biophysj.108.132274 Mazumder, 2010, Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development, J. R. Soc. Interface, 7, S321, 10.1098/rsif.2010.0039.focus Kim, 2017, Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology, Nat. Commun., 8, 1 Nozawa, 2017, SAF-A regulates interphase chromosome structure through oligomerization with chromatin-associated RNAs, Cell, 169, 1214, 10.1016/j.cell.2017.05.029 Arsenovic, 2016, Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension, Biophys. J., 110, 34, 10.1016/j.bpj.2015.11.014 Alam, 2014, Nuclear forces and cell mechanosensing, Prog. Mol. Biol. Transl. Sci., 126, 205, 10.1016/B978-0-12-394624-9.00008-7 Kim, 2015, Cytoskeletal tension induces the polarized architecture of the nucleus, Biomaterials, 48, 161, 10.1016/j.biomaterials.2015.01.023 Li, 2014, The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry, Biomaterials, 35, 961, 10.1016/j.biomaterials.2013.10.037 Gao, 2006, Regulation of nuclear translocation of HDAC3 by IkBa is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor g function, J. Biol. Chem., 281, 4540, 10.1074/jbc.M507784200 Zhou, 2016, Mechanisms of ATP-dependent chromatin remodeling motors, Annu. Rev. Biophys., 45, 153, 10.1146/annurev-biophys-051013-022819 Harr, 2016, Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man, EMBO Rep., 17, 139, 10.15252/embr.201541809 Talwar, 2013, Correlated spatio-temporal fluctuations in chromatin compaction states characterize stem cells, Biophys. J., 104, 553, 10.1016/j.bpj.2012.12.033 Galati, 2013, Chromatin structure in telomere dynamics, Front. Oncol., 3, 46, 10.3389/fonc.2013.00046 Murga, 2007, Global chromatin compaction limits the strength of the DNA damage response, J. Cell Biol., 178, 1101, 10.1083/jcb.200704140 Burke, 2013, The nuclear lamins: flexibility in function, Nat. Rev. Mol. Cell Biol., 14, 13, 10.1038/nrm3488 Gruenbaum, 2015, Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation, Annu. Rev. Biochem., 84, 131, 10.1146/annurev-biochem-060614-034115 Houben, 2007, Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength, Biochim. Biophys. Acta, 1773, 675, 10.1016/j.bbamcr.2006.09.018 Lammerding, 2006, Lamins A and C but not lamin B1 regulate nuclear mechanics, J. Biol. Chem., 281, 25768, 10.1074/jbc.M513511200 Stephens, 2017, Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus, Mol. Biol. Cell, 28, 1984, 10.1091/mbc.e16-09-0653 Buxboim, 2014, Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin, Curr. Biol., 24, 1909, 10.1016/j.cub.2014.07.001 Swift, 2013, Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation, Science, 341, 10.1126/science.1240104 Lanctôt, 2007, Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions, Nat. Rev. Genet., 8, 104, 10.1038/nrg2041 Dekker, 2016, The 3D genome as moderator of chromosomal communication, Cell, 164, 1110, 10.1016/j.cell.2016.02.007 Maharana, 2016, Chromosome intermingling–the physical basis of chromosome organization in differentiated cells, Nucleic Acids Res., 44, 5148, 10.1093/nar/gkw131 Bonev, 2016, Organization and function of the 3D genome, Nat. Rev. Genet., 17, 661, 10.1038/nrg.2016.112 Chen, 2015, Functional organization of the human 4D nucleome, Proc. Natl. Acad. Sci. U. S. A., 112, 8002, 10.1073/pnas.1505822112 Kind, 2015, Genome-wide maps of nuclear lamina interactions in single human cells, Cell, 163, 134, 10.1016/j.cell.2015.08.040 Meshorer, 2006, Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells, Dev. Cell, 10, 105, 10.1016/j.devcel.2005.10.017 Pajerowski, 2007, Physical plasticity of the nucleus in stem cell differentiation, Proc. Natl. Acad. Sci. U. S. A., 104, 15619, 10.1073/pnas.0702576104 Bickmore, 2013, Genome architecture: domain organization of interphase chromosomes, Cell, 152, 1270, 10.1016/j.cell.2013.02.001 Iyer, 2012, Modeling and experimental methods to probe the link between global transcription and spatial organization of chromosomes, PLoS One, 7, 10.1371/journal.pone.0046628 Yu, 2017, The three-dimensional organization of mammalian genomes, Annu. Rev. Cell Dev. Biol., 33, 265, 10.1146/annurev-cellbio-100616-060531 Gonzalez-Sandoval, 2016, On TADs and LADs: spatial control over gene expression, Trends Genet., 32, 485, 10.1016/j.tig.2016.05.004 Osborne, 2004, Active genes dynamically colocalize to shared sites of ongoing transcription, Nat. Genet., 36, 1065, 10.1038/ng1423 Belyaeva, 2017, Network analysis identifies chromosome intermingling regions as regulatory hotspots for transcription, Proc. Natl. Acad. Sci. U. S. A., 114, 13714, 10.1073/pnas.1708028115 Uhler, 2017, Chromosome intermingling: mechanical hotspots for genome regulation, Trends Cell Biol., 27, 810, 10.1016/j.tcb.2017.06.005 Capurso, 2016, Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions, Nucleic Acids Res., 44, 2028, 10.1093/nar/gkw070 Branco, 2006, Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations, PLoS Biol., 4, e138, 10.1371/journal.pbio.0040138 Teves, 2014, DNA torsion as a feedback mediator of transcription and chromatin dynamics, Nucleus, 5, 211, 10.4161/nucl.29086 Wang, 2017, Orientation and repositioning of chromosomes correlate with cell geometry-dependent gene expression, Mol. Biol. Cell, 28, 1997, 10.1091/mbc.e16-12-0825 Uhler, 2017, The regulation of genome organization and gene expression by nuclear mechanotransduction, Nat. Rev. Mol. Cell Biol., 18, 717, 10.1038/nrm.2017.101 Miroshnikova, 2017, Emerging roles of mechanical forces in chromatin regulation, J. Cell Sci., 130, 2243, 10.1242/jcs.202192 Fedorchak, 2014, Cellular mechanosensing: getting to the nucleus of it all, Prog. Biophys. Mol. Biol., 115, 76, 10.1016/j.pbiomolbio.2014.06.009 Cho, 2017, Mechanosensing by the nucleus: from pathways to scaling relationships, J. Cell Biol., 216, 305, 10.1083/jcb.201610042 Mitra, 2017, Cell geometry dictates TNFα-induced genome response, Proc. Natl. Acad. Sci. U. S. A., 114, E3882, 10.1073/pnas.1618007114 Makhija, 2016, Nuclear deformability and telomere dynamics are regulated by cell geometric constraints, Proc. Natl. Acad. Sci. U. S. A., 113, E32, 10.1073/pnas.1513189113 Kumar, 2014, ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress, Cell, 158, 633, 10.1016/j.cell.2014.05.046 Irianto, 2017, DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration, Curr. Biol., 27, 210, 10.1016/j.cub.2016.11.049 Raab, 2016, ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death, Science, 352, 359, 10.1126/science.aad7611 Denais, 2016, Nuclear envelope rupture and repair during cancer cell migration, Science, 352, 353, 10.1126/science.aad7297 Starr, 2010, Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges, Annu. Rev. Cell Dev. Biol., 26, 421, 10.1146/annurev-cellbio-100109-104037 Sosa, 2013, Structural insights into LINC complexes, Curr. Opin. Struct. Biol., 23, 285, 10.1016/j.sbi.2013.03.005 Lombardi, 2011, The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton, J. Biol. Chem., 286, 26743, 10.1074/jbc.M111.233700 Ihalainen, 2015, Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension, Nat. Mater., 14, 1252, 10.1038/nmat4389 Schreiner, 2015, The tethering of chromatin to the nuclear envelope supports nuclear mechanics, Nat. Commun., 6, 7159, 10.1038/ncomms8159 Ramdas, 2015, Cytoskeletal control of nuclear morphology and chromatin organization, J. Mol. Biol., 427, 695, 10.1016/j.jmb.2014.09.008 Iyer, 2012, Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport, Biophys. J., 103, 1416, 10.1016/j.bpj.2012.08.041 Gesson, 2016, A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha, Genome Res., 26, 462, 10.1101/gr.196220.115 Alam, 2016, The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity, Sci. Rep., 6, 10.1038/srep38063 Scaffidi, 2006, Lamin A-dependent nuclear defects in human aging, Science, 312, 1059, 10.1126/science.1127168 Ghosh, 2014, Genetics of aging, progeria and lamin disorders, Curr. Opin. Genet. Dev., 26, 41, 10.1016/j.gde.2014.05.003 Glynn, 2005, Incomplete processing of mutant lamin A in Hutchinson?Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition, Hum. Mol. Genet., 14, 2959, 10.1093/hmg/ddi326 Capell, 2006, Human laminopathies: nuclei gone genetically awry, Nat. Rev. Genet., 7, 940, 10.1038/nrg1906 Frost, 2016, Alzheimer's disease: An acquired neurodegenerative laminopathy, Nucleus, 7, 275, 10.1080/19491034.2016.1183859 Underwood, 1990 Liu, 2016, Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape, Nat. Rev. Cancer, 16, 359, 10.1038/nrc.2016.41 Flavahan, 2017, Epigenetic plasticity and the hallmarks of cancer, Science, 357, 10.1126/science.aal2380 Hnisz, 2016, Activation of proto-oncogenes by disruption of chromosome neighborhoods, Science, 351, 1454, 10.1126/science.aad9024 Chin, 2016, Mechanotransduction in cancer, Curr. Opin. Chem. Eng., 11, 77, 10.1016/j.coche.2016.01.011 Przybyla, 2016, Mechanical control of epithelial-to-mesenchymal transitions in development and cancer, Annu. Rev. Cell Dev. Biol., 32, 527, 10.1146/annurev-cellbio-111315-125150 Fernandez-Sanchez, 2015, Mechanotransduction’s impact on animal development, evolution, and tumorigenesis, Annu. Rev. Cell Dev. Biol., 31, 373, 10.1146/annurev-cellbio-102314-112441 Nandakumar, 2012, Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations, PLoS One, 7, 10.1371/journal.pone.0029230 Nyirenda, 2011, Preclinical evaluation of nuclear morphometry and tissue topology for breast carcinoma detection and margin assessment, Breast Cancer Res. Treat., 126, 345, 10.1007/s10549-010-0914-z Mueller, 2016, Rapid staining and imaging of subnuclear features to differentiate between malignant and benign breast tissues at a point-of-care setting, J. Cancer Res. Clin. Oncol., 142, 1475, 10.1007/s00432-016-2165-9 Grys, 2017, Machine learning and computer vision approaches for phenotypic profiling, J. Cell Biol., 216, 65, 10.1083/jcb.201610026 LeCun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539 Gann, 2013, Development of a nuclear morphometric signature for prostate cancer risk in negative biopsies, PLoS One, 8, 10.1371/journal.pone.0069457 Huang, 2014, Cancer diagnosis by nuclear morphometry using spatial information, Pattern Recognit. Lett., 42, 115, 10.1016/j.patrec.2014.02.008 Faridi, P. et al. (2016) An automatic system for cell nuclei pleomorphism segmentation in histopathological images of breast cancer. In IEEE Signal Processing in Medicine and Biology Symposium (SPMB), (eds), pp. 1–5, IEEE Wolfe, 2004, Using nuclear morphometry to discriminate the tumorigenic potential of cells: a comparison of statistical methods, Cancer Epidemiol. Biomarkers Prev., 13, 976, 10.1158/1055-9965.976.13.6 Radhakrishnan, 2017, Machine learning for nuclear mechano–morphometric biomarkers in cancer diagnosis, Sci. Rep., 7, 10.1038/s41598-017-17858-1 Tsoucas, 2017, Recent progress in single-cell cancer genomics, Curr. Opin. Genet. Dev., 42, 22, 10.1016/j.gde.2017.01.002 Gerdes, 2013, Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue, Proc. Natl. Acad. Sci. U. S. A., 110, 11982, 10.1073/pnas.1300136110 Shalek, 2014, Single-cell RNA-seq reveals dynamic paracrine control of cellular variation, Nature, 510, 363, 10.1038/nature13437 Klein, 2015, Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell, 161, 1187, 10.1016/j.cell.2015.04.044 Rubakhin, 2011, Profiling metabolites and peptides in single cells, Nat. Methods, 8, S20, 10.1038/nmeth.1549