Nuclear Mechanopathology and Cancer Diagnosis
Tài liệu tham khảo
Geiger, 2009, Environmental sensing through focal adhesions, Nat. Rev. Mol. Cell Biol., 10, 21, 10.1038/nrm2593
Discher, 2017, Matrix mechanosensing: from scaling concepts in ’omics data to mechanisms in the nucleus, regeneration, and cancer, Annu. Rev. Biophys., 46, 295, 10.1146/annurev-biophys-062215-011206
Heller, 2015, Tissue patterning and cellular mechanics, J. Cell Biol., 211, 219, 10.1083/jcb.201506106
Shivashankar, 2011, Mechanosignaling to the cell nucleus and gene regulation, Annu. Rev. Biophys., 40, 361, 10.1146/annurev-biophys-042910-155319
Wang, 2009, Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus, Nat. Rev. Mol. Cell Biol., 10, 75, 10.1038/nrm2594
Cho, 2017, Mechanosensing by the nucleus: From pathways to scaling relationships, J. Cell Biol., 216, 305, 10.1083/jcb.201610042
Kadrmas, 2004, The LIM domain: from the cytoskeleton to the nucleus, Nat. Rev. Mol. Cell Biol., 5, 920, 10.1038/nrm1499
Fedorchak, 2014, Cellular mechanosensing: getting to the nucleus of it all, Prog. Biophys. Mol. Biol., 115, 76, 10.1016/j.pbiomolbio.2014.06.009
Humphrey, 2014, Mechanotransduction and extracellular matrix homeostasis, Nat. Rev. Mol. Cell Biol., 15, 802, 10.1038/nrm3896
Iskratsch, 2014, Appreciating force and shape—the rise of mechanotransduction in cell biology, Nat. Rev. Mol. Cell Biol., 15, 825, 10.1038/nrm3903
Sun, 2016, Integrin-mediated mechanotransduction, J. Cell Biol., 215, 445, 10.1083/jcb.201609037
Stewart, 2015, Nuclear–cytoskeletal linkages facilitate cross talk between the nucleus and intercellular adhesions, J. Cell Biol., 209, 403, 10.1083/jcb.201502024
Keeling, 2017, Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization, Sci. Rep., 7, 5219, 10.1038/s41598-017-05467-x
Sero, 2015, Cell shape and the microenvironment regulate nuclear translocation of NF-κB in breast epithelial and tumor cells, Mol. Syst. Biol., 11, 0790, 10.15252/msb.20145644
Luca, 2017, Notch–Jagged complex structure implicates a catch bond in tuning ligand sensitivity, Science, 355, 1320, 10.1126/science.aaf9739
Speight, 2016, Context-dependent switch in chemo/mechanotransduction via multilevel crosstalk among cytoskeleton-regulated MRTF and TAZ and TGFβ-regulated Smad3, Nat. Commun., 7, 11642, 10.1038/ncomms11642
Starr, 2010, Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges, Annu. Rev. Cell Dev. Biol., 26, 421, 10.1146/annurev-cellbio-100109-104037
Crisp, 2006, Coupling of the nucleus and cytoplasm: role of the LINC complex, J. Cell Biol., 172, 41, 10.1083/jcb.200509124
Jain, 2013, Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility, Proc. Natl. Acad. Sci. U. S. A., 110, 11349, 10.1073/pnas.1300801110
Lammerding, 2005, Abnormal nuclear shape and impaired mechanotransduction in emerin-deficient cells, J. Cell Biol., 170, 781, 10.1083/jcb.200502148
Zhang, 2007, Nesprin-1 and -2 are involved in the pathogenesis of Emery–Dreifuss muscular dystrophy and are critical for nuclear envelope integrity, Hum. Mol. Genet., 16, 2816, 10.1093/hmg/ddm238
Zink, 2004, Nuclear structure in cancer cells, Nat. Rev. Cancer, 4, 677, 10.1038/nrc1430
Mazumder, 2007, Gold-nanoparticle-assisted laser perturbation of chromatin assembly reveals unusual aspects of nuclear architecture within living cells, Biophys. J., 93, 2209, 10.1529/biophysj.106.102202
Allis, 2016, The molecular hallmarks of epigenetic control, Nat. Rev. Genet., 17, 487, 10.1038/nrg.2016.59
Bustin, 2016, Nongenetic functions of the genome, Science, 352, 10.1126/science.aad6933
Gonzalez-Sandoval, 2016, On TADs and LADs: spatial control over gene expression, Trends Genet., 32, 485, 10.1016/j.tig.2016.05.004
Rao, 2014, A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping, Cell, 159, 1665, 10.1016/j.cell.2014.11.021
Lieberman-Aiden, 2009, Comprehensive mapping of long-range interactions reveals folding principles of the human genome, Science, 326, 289, 10.1126/science.1181369
Mazumder, 2008, Dynamics of chromatin decondensation reveals the structural integrity of a mechanically prestressed nucleus, Biophys. J., 95, 3028, 10.1529/biophysj.108.132274
Mazumder, 2010, Emergence of a prestressed eukaryotic nucleus during cellular differentiation and development, J. R. Soc. Interface, 7, S321, 10.1098/rsif.2010.0039.focus
Kim, 2017, Nuclear lamin A/C harnesses the perinuclear apical actin cables to protect nuclear morphology, Nat. Commun., 8, 1
Nozawa, 2017, SAF-A regulates interphase chromosome structure through oligomerization with chromatin-associated RNAs, Cell, 169, 1214, 10.1016/j.cell.2017.05.029
Arsenovic, 2016, Nesprin-2G, a component of the nuclear LINC complex, is subject to myosin-dependent tension, Biophys. J., 110, 34, 10.1016/j.bpj.2015.11.014
Alam, 2014, Nuclear forces and cell mechanosensing, Prog. Mol. Biol. Transl. Sci., 126, 205, 10.1016/B978-0-12-394624-9.00008-7
Kim, 2015, Cytoskeletal tension induces the polarized architecture of the nucleus, Biomaterials, 48, 161, 10.1016/j.biomaterials.2015.01.023
Li, 2014, The regulation of dynamic mechanical coupling between actin cytoskeleton and nucleus by matrix geometry, Biomaterials, 35, 961, 10.1016/j.biomaterials.2013.10.037
Gao, 2006, Regulation of nuclear translocation of HDAC3 by IkBa is required for tumor necrosis factor inhibition of peroxisome proliferator-activated receptor g function, J. Biol. Chem., 281, 4540, 10.1074/jbc.M507784200
Zhou, 2016, Mechanisms of ATP-dependent chromatin remodeling motors, Annu. Rev. Biophys., 45, 153, 10.1146/annurev-biophys-051013-022819
Harr, 2016, Histones and histone modifications in perinuclear chromatin anchoring: from yeast to man, EMBO Rep., 17, 139, 10.15252/embr.201541809
Talwar, 2013, Correlated spatio-temporal fluctuations in chromatin compaction states characterize stem cells, Biophys. J., 104, 553, 10.1016/j.bpj.2012.12.033
Galati, 2013, Chromatin structure in telomere dynamics, Front. Oncol., 3, 46, 10.3389/fonc.2013.00046
Murga, 2007, Global chromatin compaction limits the strength of the DNA damage response, J. Cell Biol., 178, 1101, 10.1083/jcb.200704140
Burke, 2013, The nuclear lamins: flexibility in function, Nat. Rev. Mol. Cell Biol., 14, 13, 10.1038/nrm3488
Gruenbaum, 2015, Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation, Annu. Rev. Biochem., 84, 131, 10.1146/annurev-biochem-060614-034115
Houben, 2007, Role of nuclear lamina-cytoskeleton interactions in the maintenance of cellular strength, Biochim. Biophys. Acta, 1773, 675, 10.1016/j.bbamcr.2006.09.018
Lammerding, 2006, Lamins A and C but not lamin B1 regulate nuclear mechanics, J. Biol. Chem., 281, 25768, 10.1074/jbc.M513511200
Stephens, 2017, Chromatin and lamin A determine two different mechanical response regimes of the cell nucleus, Mol. Biol. Cell, 28, 1984, 10.1091/mbc.e16-09-0653
Buxboim, 2014, Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin, Curr. Biol., 24, 1909, 10.1016/j.cub.2014.07.001
Swift, 2013, Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation, Science, 341, 10.1126/science.1240104
Lanctôt, 2007, Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions, Nat. Rev. Genet., 8, 104, 10.1038/nrg2041
Dekker, 2016, The 3D genome as moderator of chromosomal communication, Cell, 164, 1110, 10.1016/j.cell.2016.02.007
Maharana, 2016, Chromosome intermingling–the physical basis of chromosome organization in differentiated cells, Nucleic Acids Res., 44, 5148, 10.1093/nar/gkw131
Bonev, 2016, Organization and function of the 3D genome, Nat. Rev. Genet., 17, 661, 10.1038/nrg.2016.112
Chen, 2015, Functional organization of the human 4D nucleome, Proc. Natl. Acad. Sci. U. S. A., 112, 8002, 10.1073/pnas.1505822112
Kind, 2015, Genome-wide maps of nuclear lamina interactions in single human cells, Cell, 163, 134, 10.1016/j.cell.2015.08.040
Meshorer, 2006, Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells, Dev. Cell, 10, 105, 10.1016/j.devcel.2005.10.017
Pajerowski, 2007, Physical plasticity of the nucleus in stem cell differentiation, Proc. Natl. Acad. Sci. U. S. A., 104, 15619, 10.1073/pnas.0702576104
Bickmore, 2013, Genome architecture: domain organization of interphase chromosomes, Cell, 152, 1270, 10.1016/j.cell.2013.02.001
Iyer, 2012, Modeling and experimental methods to probe the link between global transcription and spatial organization of chromosomes, PLoS One, 7, 10.1371/journal.pone.0046628
Yu, 2017, The three-dimensional organization of mammalian genomes, Annu. Rev. Cell Dev. Biol., 33, 265, 10.1146/annurev-cellbio-100616-060531
Gonzalez-Sandoval, 2016, On TADs and LADs: spatial control over gene expression, Trends Genet., 32, 485, 10.1016/j.tig.2016.05.004
Osborne, 2004, Active genes dynamically colocalize to shared sites of ongoing transcription, Nat. Genet., 36, 1065, 10.1038/ng1423
Belyaeva, 2017, Network analysis identifies chromosome intermingling regions as regulatory hotspots for transcription, Proc. Natl. Acad. Sci. U. S. A., 114, 13714, 10.1073/pnas.1708028115
Uhler, 2017, Chromosome intermingling: mechanical hotspots for genome regulation, Trends Cell Biol., 27, 810, 10.1016/j.tcb.2017.06.005
Capurso, 2016, Discovering hotspots in functional genomic data superposed on 3D chromatin configuration reconstructions, Nucleic Acids Res., 44, 2028, 10.1093/nar/gkw070
Branco, 2006, Intermingling of chromosome territories in interphase suggests role in translocations and transcription-dependent associations, PLoS Biol., 4, e138, 10.1371/journal.pbio.0040138
Teves, 2014, DNA torsion as a feedback mediator of transcription and chromatin dynamics, Nucleus, 5, 211, 10.4161/nucl.29086
Wang, 2017, Orientation and repositioning of chromosomes correlate with cell geometry-dependent gene expression, Mol. Biol. Cell, 28, 1997, 10.1091/mbc.e16-12-0825
Uhler, 2017, The regulation of genome organization and gene expression by nuclear mechanotransduction, Nat. Rev. Mol. Cell Biol., 18, 717, 10.1038/nrm.2017.101
Miroshnikova, 2017, Emerging roles of mechanical forces in chromatin regulation, J. Cell Sci., 130, 2243, 10.1242/jcs.202192
Fedorchak, 2014, Cellular mechanosensing: getting to the nucleus of it all, Prog. Biophys. Mol. Biol., 115, 76, 10.1016/j.pbiomolbio.2014.06.009
Cho, 2017, Mechanosensing by the nucleus: from pathways to scaling relationships, J. Cell Biol., 216, 305, 10.1083/jcb.201610042
Mitra, 2017, Cell geometry dictates TNFα-induced genome response, Proc. Natl. Acad. Sci. U. S. A., 114, E3882, 10.1073/pnas.1618007114
Makhija, 2016, Nuclear deformability and telomere dynamics are regulated by cell geometric constraints, Proc. Natl. Acad. Sci. U. S. A., 113, E32, 10.1073/pnas.1513189113
Kumar, 2014, ATR mediates a checkpoint at the nuclear envelope in response to mechanical stress, Cell, 158, 633, 10.1016/j.cell.2014.05.046
Irianto, 2017, DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration, Curr. Biol., 27, 210, 10.1016/j.cub.2016.11.049
Raab, 2016, ESCRT III repairs nuclear envelope ruptures during cell migration to limit DNA damage and cell death, Science, 352, 359, 10.1126/science.aad7611
Denais, 2016, Nuclear envelope rupture and repair during cancer cell migration, Science, 352, 353, 10.1126/science.aad7297
Starr, 2010, Interactions between nuclei and the cytoskeleton are mediated by SUN-KASH nuclear-envelope bridges, Annu. Rev. Cell Dev. Biol., 26, 421, 10.1146/annurev-cellbio-100109-104037
Sosa, 2013, Structural insights into LINC complexes, Curr. Opin. Struct. Biol., 23, 285, 10.1016/j.sbi.2013.03.005
Lombardi, 2011, The interaction between nesprins and sun proteins at the nuclear envelope is critical for force transmission between the nucleus and cytoskeleton, J. Biol. Chem., 286, 26743, 10.1074/jbc.M111.233700
Ihalainen, 2015, Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension, Nat. Mater., 14, 1252, 10.1038/nmat4389
Schreiner, 2015, The tethering of chromatin to the nuclear envelope supports nuclear mechanics, Nat. Commun., 6, 7159, 10.1038/ncomms8159
Ramdas, 2015, Cytoskeletal control of nuclear morphology and chromatin organization, J. Mol. Biol., 427, 695, 10.1016/j.jmb.2014.09.008
Iyer, 2012, Mechanical activation of cells induces chromatin remodeling preceding MKL nuclear transport, Biophys. J., 103, 1416, 10.1016/j.bpj.2012.08.041
Gesson, 2016, A-type lamins bind both hetero- and euchromatin, the latter being regulated by lamina-associated polypeptide 2 alpha, Genome Res., 26, 462, 10.1101/gr.196220.115
Alam, 2016, The mammalian LINC complex regulates genome transcriptional responses to substrate rigidity, Sci. Rep., 6, 10.1038/srep38063
Scaffidi, 2006, Lamin A-dependent nuclear defects in human aging, Science, 312, 1059, 10.1126/science.1127168
Ghosh, 2014, Genetics of aging, progeria and lamin disorders, Curr. Opin. Genet. Dev., 26, 41, 10.1016/j.gde.2014.05.003
Glynn, 2005, Incomplete processing of mutant lamin A in Hutchinson?Gilford progeria leads to nuclear abnormalities, which are reversed by farnesyltransferase inhibition, Hum. Mol. Genet., 14, 2959, 10.1093/hmg/ddi326
Capell, 2006, Human laminopathies: nuclei gone genetically awry, Nat. Rev. Genet., 7, 940, 10.1038/nrg1906
Frost, 2016, Alzheimer's disease: An acquired neurodegenerative laminopathy, Nucleus, 7, 275, 10.1080/19491034.2016.1183859
Underwood, 1990
Liu, 2016, Beyond transcription factors: how oncogenic signalling reshapes the epigenetic landscape, Nat. Rev. Cancer, 16, 359, 10.1038/nrc.2016.41
Flavahan, 2017, Epigenetic plasticity and the hallmarks of cancer, Science, 357, 10.1126/science.aal2380
Hnisz, 2016, Activation of proto-oncogenes by disruption of chromosome neighborhoods, Science, 351, 1454, 10.1126/science.aad9024
Chin, 2016, Mechanotransduction in cancer, Curr. Opin. Chem. Eng., 11, 77, 10.1016/j.coche.2016.01.011
Przybyla, 2016, Mechanical control of epithelial-to-mesenchymal transitions in development and cancer, Annu. Rev. Cell Dev. Biol., 32, 527, 10.1146/annurev-cellbio-111315-125150
Fernandez-Sanchez, 2015, Mechanotransduction’s impact on animal development, evolution, and tumorigenesis, Annu. Rev. Cell Dev. Biol., 31, 373, 10.1146/annurev-cellbio-102314-112441
Nandakumar, 2012, Isotropic 3D nuclear morphometry of normal, fibrocystic and malignant breast epithelial cells reveals new structural alterations, PLoS One, 7, 10.1371/journal.pone.0029230
Nyirenda, 2011, Preclinical evaluation of nuclear morphometry and tissue topology for breast carcinoma detection and margin assessment, Breast Cancer Res. Treat., 126, 345, 10.1007/s10549-010-0914-z
Mueller, 2016, Rapid staining and imaging of subnuclear features to differentiate between malignant and benign breast tissues at a point-of-care setting, J. Cancer Res. Clin. Oncol., 142, 1475, 10.1007/s00432-016-2165-9
Grys, 2017, Machine learning and computer vision approaches for phenotypic profiling, J. Cell Biol., 216, 65, 10.1083/jcb.201610026
LeCun, 2015, Deep learning, Nature, 521, 436, 10.1038/nature14539
Gann, 2013, Development of a nuclear morphometric signature for prostate cancer risk in negative biopsies, PLoS One, 8, 10.1371/journal.pone.0069457
Huang, 2014, Cancer diagnosis by nuclear morphometry using spatial information, Pattern Recognit. Lett., 42, 115, 10.1016/j.patrec.2014.02.008
Faridi, P. et al. (2016) An automatic system for cell nuclei pleomorphism segmentation in histopathological images of breast cancer. In IEEE Signal Processing in Medicine and Biology Symposium (SPMB), (eds), pp. 1–5, IEEE
Wolfe, 2004, Using nuclear morphometry to discriminate the tumorigenic potential of cells: a comparison of statistical methods, Cancer Epidemiol. Biomarkers Prev., 13, 976, 10.1158/1055-9965.976.13.6
Radhakrishnan, 2017, Machine learning for nuclear mechano–morphometric biomarkers in cancer diagnosis, Sci. Rep., 7, 10.1038/s41598-017-17858-1
Tsoucas, 2017, Recent progress in single-cell cancer genomics, Curr. Opin. Genet. Dev., 42, 22, 10.1016/j.gde.2017.01.002
Gerdes, 2013, Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue, Proc. Natl. Acad. Sci. U. S. A., 110, 11982, 10.1073/pnas.1300136110
Shalek, 2014, Single-cell RNA-seq reveals dynamic paracrine control of cellular variation, Nature, 510, 363, 10.1038/nature13437
Klein, 2015, Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell, 161, 1187, 10.1016/j.cell.2015.04.044
Rubakhin, 2011, Profiling metabolites and peptides in single cells, Nat. Methods, 8, S20, 10.1038/nmeth.1549