Novosphingobium pokkalii sp nov, a novel rhizosphere-associated bacterium with plant beneficial properties isolated from saline-tolerant pokkali rice
Tài liệu tham khảo
Tiirola, 2002, Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system, Appl Environ Microbiol, 68, 173, 10.1128/AEM.68.1.173-180.2002
Tiirola, 2005, Novosphingobium lentum sp. nov., a psychrotolerant bacterium from a polychlorophenol bioremediation process, Int J Syst Evol Microbiol, 55, 583, 10.1099/ijs.0.63386-0
Yan, 2007, Isolation and characterization of a carbofuran-degrading strain Novosphingobium sp. FND-3, FEMS Microbiol Lett, 271, 207, 10.1111/j.1574-6968.2007.00718.x
Kanaly, 2010, Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria, Microb Biotechnol, 3, 136, 10.1111/j.1751-7915.2009.00130.x
Hashimoto, 2010, Contribution of the estrogen-degrading bacterium Novosphingobium sp. strain JEM-1 to estrogen removal in wastewater treatment, J Environ Eng, 136, 890, 10.1061/(ASCE)EE.1943-7870.0000218
Notomista, 2011, The marine isolate Novosphingobium sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source, Microb Ecol, 61, 582, 10.1007/s00248-010-9786-3
Niharika, 2012, Novosphingobium barchaimii sp. nov., isolated from a hexachlorocyclohexane (HCH) contaminated soil, Int J Syst Evol Microbiol, 63, 667, 10.1099/ijs.0.039826-0
Waigi, 2015, Phenanthrene biodegradation by sphingomonads and its application in the contaminated soils and sediments: a review, Int Biodeter Biodegr, 104, 333, 10.1016/j.ibiod.2015.06.008
Basta, 2004, Detection and characterization of conjugative degradative plasmids in xenobiotic-degrading Sphingomonas strains, J Bacteriol, 186, 3862, 10.1128/JB.186.12.3862-3872.2004
Lal, 2010, Biochemistry of microbial degradation of hexachlorocyclohexane and prospects for bioremediation, Microbiol Mol Biol Rev, 74, 58, 10.1128/MMBR.00029-09
D'Argenio, 2011, De Novo sequencing and assembly of the whole genome of novosphingobium sp. strain PP1Y, J Bacteriol, 193, 4296, 10.1128/JB.05349-11
Luo, 2012, Genome sequence of benzo(a)pyrene-degrading bacterium Novosphingobium pentaromativorans US6-1, J Bacteriol, 194, 907, 10.1128/JB.06476-11
D'Argenio, 2014, Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern, BMC Genomics, 15, 384, 10.1186/1471-2164-15-384
Gan, 2013, Comparative genomic analysis of six bacteria belonging to the genus Novosphingobium: insights into marine adaptation, cell-cell signaling and bioremediation, BMC Genomics, 14, 431, 10.1186/1471-2164-14-431
Aylward, 2013, Comparison of 26 sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities, Appl Environ Microbiol, 79, 3724, 10.1128/AEM.00518-13
Nguyen, 2014, Genetic and metabolic analysis of the carbofuran catabolic pathway in Novosphingobium sp. KN65.2, Appl Microbiol Biotechnol, 98, 8235, 10.1007/s00253-014-5858-5
Muehe, 2015, Rhizosphere microbial community composition affects cadmium and zinc uptake by the metal-hyperaccumulating plant Arabidopsis halleri, Appl Environ Microbiol, 81, 2173, 10.1128/AEM.03359-14
Lyu, 2014, Biodegradation of polycyclic aromatic hydrocarbons by Novosphingobium pentaromativorans US6-1, PLoS ONE, 9, 8, 10.1371/journal.pone.0101438
Sohn, 2004, Novosphingobium pentaromativorans sp. nov., a high-molecular-mass polycyclic aromatic hydrocarbon-degrading bacterium isolated from estuarine sediment, Int J Syst Evol Microbiol, 54, 1483, 10.1099/ijs.0.02945-0
Suzuki, 2007, Novosphingobium naphthalenivorans sp. nov., a naphthalene-degrading bacterium isolated from polychlorinated-dioxin-contaminated environments, J Gen Appl Microbiol, 53, 221, 10.2323/jgam.53.221
Schreiter, 2014, Effect of the soil type on the microbiome in the rhizosphere of field-grown lettuce, Front Microbiol, 5, 144, 10.3389/fmicb.2014.00144
Zachow, 2014, Differences between the rhizosphere microbiome of Beta vulgaris ssp. maritima-ancestor of all beet crop- and modern sugar beets, Front Microbiol, 5, 415, 10.3389/fmicb.2014.00415
Sang, 2013, Biocontrol of Phytophthora blight and anthracnose in pepper by sequentially selected antagonistic rhizobacteria against Phytophthora capsici, J Plant Pathol, 29, 154, 10.5423/PPJ.OA.07.2012.0104
Islam, 2013, Nitrogen-fixing bacteria with multiple plant growth-promoting activities enhance growth of tomato and red pepper, J Basic Microb, 53, 1004
Banik, 2016, Characterization of N2-fixing plant growth-promoting endophytic and epiphytic bacterial community of Indian cultivated and wild rice (Oryza spp.) genotypes, Planta, 243, 799, 10.1007/s00425-015-2444-8
Zhang, 2016, Novosphingobium oryzae sp. nov., a potential plant-promoting endophytic bacterium isolated from rice roots, Int J Syst Evol Microbiol, 66, 302, 10.1099/ijsem.0.000718
Kämpfer, 2015, Proposal of Novosphingobium rhizosphaerae sp. nov., isolated from the rhizosphere, Int J Syst Evol Microbiol, 65, 195, 10.1099/ijs.0.070375-0
Lin, 2014, Novosphingobium arabidopsis sp. nov., a DDT-resistant bacterium isolated from the rhizosphere of Arabidopsis thaliana, Int J Syst Evol Microbiol, 64, 594, 10.1099/ijs.0.054460-0
Kämpfer, 2015, Novosphingobium gossypii sp. nov., isolated from Gossypium hirsutum, Int J Syst Evol Microbiol, 65, 2831, 10.1099/ijs.0.000339
Gao, 2015, Novosphingobium fluoreni sp. nov., isolated from rice seeds, Int J Syst Evol Microbiol, 65, 1409, 10.1099/ijs.0.000111
Li, 2015, Novosphingobium endophyticum sp. nov. isolated from roots of Glycyrrhiza uralensis, Arch Microbiol, 8, 2928
Krishnan, 2016, Arthrobacter pokkalii sp nov, a novel plant associated actinobacterium with plant beneficial properties, isolated from saline tolerant pokkali rice, Kerala, India, PLoS ONE, 11, e10150322, 10.1371/journal.pone.0150322
Rameshkumar, 2016, Description of Vogesella oryzae sp. nov., isolated from the rhizosphere of saline tolerant pokkali rice, Syst Appl Microbiol, 39, 20, 10.1016/j.syapm.2015.10.003
Rameshkumar, 2009, Isolation and molecular characterization of genetically diverse antagonistic, diazotrophic red-pigmented vibrios from different mangrove rhizospheres, FEMS Microbiol Ecol, 67, 455, 10.1111/j.1574-6941.2008.00638.x
Versalovic, 1994, Genomic fingerprinting of bacteria using repetitive sequence based polymerase chain reaction, Methods Mol Cell Biol, 5, 25
Busse, 1988, Polyamine pattern as a chemotaxonomic marker within the Proteobacteria, Syst Appl Microbiol, 11, 1, 10.1016/S0723-2020(88)80040-7
Busse, 1997, Discrimination of members of the family Pasteurellaceae based on polyamine patterns, Int J Syst Bacteriol, 47, 698, 10.1099/00207713-47-3-698
Stolz, 2007, Pseudomonas knackmussii sp. nov, Int J Syst Evol Microbiol, 57, 572, 10.1099/ijs.0.64761-0
Tindall, 1990, Lipid composition of Halobacterium lacusprofundi, FEMS Microbiol Lett, 66, 199, 10.1111/j.1574-6968.1990.tb03996.x
Tindall, 1990, A comparative study of the lipid composition of Halobacterium saccharovorum from various sources, Syst Appl Microbiol, 13, 128, 10.1016/S0723-2020(11)80158-X
Altenburger, 1996, Classification of bacteria isolated from a medieval wall painting, J Biotechnol, 47, 39, 10.1016/0168-1656(96)01376-4
Hurek, 1994, Root colonization and systemic spreading of Azoarcus sp. strain BH72 in grasses, J Bacteriol, 176, 1913, 10.1128/jb.176.7.1913-1923.1994
Chun, 2007, EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences, Int J Syst Evol Microbiol, 57, 2259, 10.1099/ijs.0.64915-0
Kämpfer, 2012, Prokaryotic taxonomy in the sequence era – the polyphasic approach revisited, Environ Microbiol, 14, 291, 10.1111/j.1462-2920.2011.02615.x
Wayne, 1987, Report of the ad-hoc-committee on reconciliation of approaches to bacterial systematic, Int J Syst Bacteriol, 37, 463, 10.1099/00207713-37-4-463
Busse, 1999, Chemotaxonomic characterisation of Sphingomonas, J Ind Microbiol Biotechnol, 1999, 242, 10.1038/sj.jim.2900745
Takeuchi, 2001, Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses, Int J Syst Evol Microbiol, 51, 1405, 10.1099/00207713-51-4-1405
Ramey, 2004, Biofilm formation in plant-microbe associations, Curr Opin Microbiol, 7, 602, 10.1016/j.mib.2004.10.014
Bianco, 2011, Soil bacteria support and protect plants against abiotic stresses
Tiwari, 2011, Salt-tolerant rhizobacteria-mediated induced tolerance in wheat (Triticum aestivum) and chemical diversity in rhizosphere enhance plant growth, Biol Fertil Soils, 47, 907, 10.1007/s00374-011-0598-5
Quin, 2014, Isolation of ACC Deaminase producing habitat-adapted symbiotic bacteria associated with halophyte Limonium sinense (Girard) Kuntze and evaluating their plant growth-promoting activity under salt stress, Plant Soil, 374, 753, 10.1007/s11104-013-1918-3
Ruppel, 2013, Properties of the halophyte microbiome and their implications for plant salt tolerance, Funct Plant Biol, 40, 940, 10.1071/FP12355
Jha, 2012, The roots of the halophyte Salicornia brachiata are a source of new halotolerant diazotrophic bacteria with plant growth-promoting potential, Plant Soil, 356, 265, 10.1007/s11104-011-0877-9
Puente, 1999, Root-surface colonization of black mangrove seedlings by Azospirillum halofraeferens and Azospirillum brasilense in seawater, FEMS Microbiol Ecol, 29, 283, 10.1111/j.1574-6941.1999.tb00619.x